Links for Palaeobotanists

Home / Charcoal & Coal Petrology / Wildfire and Present Day Fire Ecology



Categories
Fossil Charcoal
Coal Petrology
Coalification
Triassic Charcoal@
! Teaching Documents about Ecology@
! The Rise of Oxygen and the Global Carbon Cycle@
! Modern Day Ecosystem Recovery@
! Stress Conditions in Recent and Fossil Plants@


Wildfire and Present Day Fire Ecology


! A.M.B. Abu Hamad et al. (2012): The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? In PDF, International Journal of Coal Geology, 96–97: 60–71.
See also here (abstract).

C.M. Belcher and V.A. Hudspith (2017): Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytologist, 213: 1521–1532.

C.M. Belcher (2016): The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire. In PDF, Phil. Trans. R. Soc. B, 371. See also here.

C.M. Belcher et al. (2013):
A 450-Million-Year History of Fire. Abstract. See also:
C.M. Belcher (ed.): Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (John Wiley & Sons). PDF file.
Table of contents on PDF page 7, Foreword on PDF page 11.
See also here.

! C.M. Belcher et al. (2010): Baseline intrinsic flammability of Earth´s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. In PDF, PNAS, 107.

C.M. Belcher et al. (2010): Burning Questions - how state of the art fire safety techniques can be applied to answer major questions in the Earth Sciences. In PDF. See also here (the slides), and there (Linklist: Fire Safety Engineering in the UK: The State of the Art. University of Edinburgh).

E.W. Bergh (2012): A one-year, postfire record of element deposition and cycling in the Kogelberg sandstone fynbos mountain ecosystem of the Western Cape, South Africa. Abstract, Thesis, Department of Geological Sciences, University of Cape Town.
See also here and there.

bigchalk: HIGH SCHOOL & BEYOND > Science > Earth Sciences > Environmental Studies > Wildfires.

! M.B. Bodí et al. (2014): Wildland fire ash: production, composition and eco-hydro-geomorphic effects. In PDF, Earth-Science Reviews, 130: 103-127- See also here.

W.J. Bond (2014): Fires in the Cenozoic: a late flowering of flammable ecosystems. In PDF, Front. Plant Sci., 5. See also here.

W.J. Bond and A.C. Scott (2010): Fire and the spread of flowering plants in the Cretaceous. In PDF, New Phytologist, 188: 1137-1150.

! W.J. Bond and J.E. Keeley (2005): Fire as a global "herbivore": the ecology and evolution of flammable ecosystems. Abstract, Trends in Ecology and Evolution, 20.

W.J. Bond et al. (2005): The global distribution of ecosystems in a world without fire. PDF file, New Phytologist, 165: 525-538.

Kevin Bonsor, howstuffworks: How Wildfires Work.

! David M.J.S. Bowman et al. (2009): Fire in the Earth System. PDF file, Science, 324: 481-484. See also here (abstract).

B.A. Byers et al. (2014): First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire. Abstract. See also here (in PDF).

W.K. Cornwell et al. (2009): Plant traits and wood fates across the globe: rotted, burned, or consumed? PDF file, Global Change Biology, 15: 2431-2449.
Still available via Internet Archive Wayback Machine.

! Walter L. Cressler (2001): Evidence of Earliest Known Wildfires. Abstract, PALAIOS, 16: 171-174.

G.M. Davies et al. (2016): The peatland vegetation burning debate: keep scientific critique in perspective. A response to Brown et al. and Douglas et al. In PDF, Phil. Trans. R. Soc., B, 371.

Discovery Online: Wildfire. Fire facts.

! S.H. Doerr and C. Santín (2016): Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Phil. Trans. R. Soc. B, 371. See also here (in PDF).

The Ecological Society of America (ESA):
ESA, a nonpartisan, nonprofit organization of scientists promote ecological science by improving communication among ecologists. Fact Sheets. Go to:
! Fire Ecology (In PDF).
These expired link are available through the Internet Archive´s Wayback Machine.

Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK: Research activities,
History and impact of fire: Pre-Quaternary, and
History and impact of fire: Recent.

! H.J. Falcon-Lang et al. (2001): Fire-prone plant communities and palaeoclimate of a Late Cretaceous fluvial to estuarine environment, Pecínov quarry, Czech Republic. PDF file, Geol. Mag., 138: 563-576.

! Fire Effects Information System (FEIS), USDA Forest Service: FEIS summarizes and synthesizes research about living organisms in the United States — their biology, ecology, and relationship to fire. Go to: Plant Species Life Form. Up-to-date information about fire effects on plants.

M. Flannigan et al. (1998): Fire Weather: Past, Present and Future. PDF file.

Gill, A.M., Moore, P.H.R. and Martin, W.K. (1994), NSW National Parks and Wildlife Service, Hurstville: Bibliography of Fire Ecology in Australia. Including fire science and fire management.

GEsource (GEsource is managed by CALIM, the Consortium of Academic Libraries in Manchester, which comprises: the John Rylands University Library of Manchester, Manchester Metropolitan University Library, UMIST Library, University of Salford Library, and Manchester Business School Library). This is a free online catalogue of high quality Internet resources in geography and environmental science. See and navigate from here. Resources are selected, catalogued and indexed by researchers and other specialists in their respective fields. Go to: Wildfires.

! I.J. Glasspool et al. (2015): The impact of fire on the Late Paleozoic Earth system. In PDF, Frontiers in PlantScience. See also here.

Global Fire Monitoring Center (GFMC). The Global Fire Monitoring Center monitors, forecasts and archives information on vegetation fires (forest fires, land-use fires, smoke pollution) at global level.

Global Fire Monitoring Center (GFMC) / Fire Ecology Research Group, Missoula, Montana: Preliminary Bibliography.
This expired link is available through the Internet Archive´s Wayback Machine.
The GFMC provides the bibliography index of literature on fire and related disciplines and studies (by J.G. Goldammer, H. Page and V.V. Furyaev). These lists are taken from monographs and other publications prepared by the Fire Ecology Research Group over the last years.

Global Fire Monitoring Center (GFMC) Fire Ecology Research Group Freiburg, Germany. Go to: Fire in Ecosystems of Boreal Eurasia, Forest Fires in Boreal Ecosystems: History and Patterns. A bibliography.

! H.D. Grissino-Mayer (2016): Fire as a Once-Dominant Disturbance Process in the Yellow Pine and Mixed Pine-Hardwood Forests of the Appalachian Mountains. In PDF. In: Greenberg, C.H. & Collins, B.S. (eds.) Natural Disturbances and Historic Range of Variation. Type, Frequency, Severity, and Post-disturbance Structure in Central Hardwood Forests USA, pp. 123–146.
Please take notice: Fire-scarred Mountain pines in fig. 6.2, 6.4, 6.5, 6.6, 6.7!

Douglas J. Hallett and Robert C. Walker (2000): Paleoecology and its application to fire and vegetation management in Kootenay National Park, British Columbia. PDF file, Journal of Paleolimnology, 24: 401-414.

Ben Harder, Science News Online: Wildfire Below: Smoldering peat disgorges huge volumes of carbon.

Christoph Hartkopf-Fröder, Geologischer Dienst Nordrhein-Westfalen, Krefeld: Das Erbe des Feuers: Was sagen schwarze Steine über die Umwelt der letzten 360 Millionen Jahre? PDF file, in German. Snapshot taken by the Internet Archive´s Wayback Machine.

! T. He and B.B. Lamont (2017): Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth´s flora. National Science Review. See also here (in PDF).

T. He et al. (2016): A 350-million-year legacy of fire adaptation among conifers. Abstract, Journal of Ecology, 104: 352–363. See also here (in PDF).

V.A. Hudspith et al. (2015): Latest Permian chars may derive from wildfires, not coal combustion. Reply, in PDF, Geology, 43.

V.A. Hudspith et al. (2014): Latest Permian chars may derive from wildfires, not coal combustion. In PDF, Geology, 42: 879-882. See also here (abstract).

! V. Iglesias et al. (2014): Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling. Front Plant Sci, 5.

International Association of Wildland Fire. The International Association of Wildland Fire is a not-for-profit organization whose mission is to facilitate communication in the global wildland fire community.

! T.P. Jones and W.G. Chaloner (1991): Fossil charcoal, its recognition and palaeoatmospheric significance. Abstract.

! J.E. Keeley et al. (2011): Fire as an evolutionary pressure shaping plant traits. PDF file, Trends in Plant Science, 16.

Bruce M. Kilgore, Professional Support, Western Regional Office, National Park Service, San Francisco: The Ecological Role of Fire in Sierran Conifer Forests Its Application to National Park Management. Snapshot taken by the Internet Archive´s Wayback Machine.

! Ann G. Kim (2010): 1.1. The Formation of Coal. PDF file, in: Coal and Peat Fires: A Global Perspective. Edited by Glenn B. Stracher, Anupma Prakash and Ellina V. Sokol (Elsevier).

B.B. Lamont and T. He (2012): Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous. In PDF, BMC Evolutionary Biology, 12. See also here.

C.P.S. Larsen, findarticles.com., from Ecology, January 01 1998: An 840-year record of fire and vegetation in a boreal white spruce forest.

! T.M. Lenton (2001): The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. In PDF, Global Change Biology, 7: 613-629.

E.R. Locatelli (2014): The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record. PDF file, In: M. Laflamme et al. (eds.): Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers, 20.

Colin J. Long et al. (2010): The effects of fire and tephra deposition on forest vegetation in the Central Cascades, Oregon. PDF file, Quaternary Research.

C.V. Looy (2013): Natural history of a plant trait: branch-system abscission in Paleozoic conifers and its environmental, autecological, and ecosystem implications in a fire-prone world. Abstract, Paleobiology, 39: 235-252.

L. Marynowskia et al. (2010): First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the Middle Jurassic of the Neuquén Basin, Argentina. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology.

Thomas Meixner and Peter M. Wohlgemuth: Climate Variability, Fire, Vegetation Recovery, and Watershed Hydrology. PDF file.

R. Moench and J. Fusaro, Colorado State University: Soil Erosion Control after Wildfire.

K. Narendran (2001): Forrest Fires - Origins and Ecological Paradoxes. Resonance, 6: 34-41. See also here.

! NASA, Earth Observatory. The purpose of NASA's Earth Observatory is to provide a freely-accessible publication on the Internet where the public can obtain new satellite imagery and scientific information about our home planet. The focus is on Earth's climate and environmental change. By activating the glossary mode, you can view each page with special terms highlighted that, when selected, will take you to the appropriate entry in the glossary. Use the full-text search engine, or go to: Global Fire Monitoring. See also datasets and images about: 1 km2 fires, and 4 km2 fires, Excellent!

! National Centers for Environmental Information (NCEI): International Multiproxy Paleofire Database (IMPD). The Fire History Database (IMPD) is an archive of fire history data derived from natural proxies. The database includes data from tree scars and establishment data, and charcoal in sediment records. Worth checking out: Introduction to Fire History Reconstruction In PDF).

! J.G. Pausas et al. (2015): Towards understanding resprouting at the global scale. In PDF, New Phytologist.

J.G. Pausas (2015): Evolutionary fire ecology: lessons learned from pines. In PDF, Trends in Plant Science.

! J.G. Pausas and J.E. Keeley (2014): Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. In PDF, New Phytologist.

! J.G. Pausas and B. Moreira (2012): Flammability as a biological concept. In PDF, New Phytologist, 194: 610-613.

! J.G. Pausas and J.E. Keeley (2009): A burning story: the role of fire in the history of life. PDF file, BioScience, 59: 593-601.

J.G. Pausas and M. Verdú (2005): Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. In PDF, Oikos, 109: 196-202.

H.I. Petersen and S. Lindström (2012): Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic-Jurassic Boundary. In PDF.

! N. Pinter and S.E. Ishman (2008): Impacts, mega-tsunami, and other extraordinary claims. In PDF, GSA today.

! M.K. Putz and E.L. Taylor (1996): Wound response in fossil trees from Antarctica and its potential as a paleoenvironmental indicator. PDF file, IAWA Journal, Vol. 17.

Stephen J. Pyne, findarticles.com., from Whole Earth, December 22 1999: The Long Burn.(history of fire ecology).

S.M. Rimmer et al. (2015): The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change. In PDF, American Journal of Science, 315: 713-733.

Paul Rincon, BBC News Online: Fossils reveal oldest wildfire.

! B.E. Robson et al. (2015): Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 53-62. See also here.

! C.I. Roos et al. (2016): Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. In PDF, Phil. Trans. R. Soc. B, 371. See also here.

Earth Sciences, Royal Holloway University of London: Wildfire in Deep time.

C. Santín et al. (2016): Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22.

A.C. Scott et al. (2016): The interaction of fire and mankind: Introduction. In PDF, Phil. Trans. R. Soc.. B, 371. See also here (table of contents).

! A.C. Scott (2009): Forest Fire in the Fossil Record. In PDF. In: Cerdà, A., 814 Robichaud, P. (eds). Fire Effects on Soils and Restoration Strategies. Science 815 Publishers Inc. New Hampshire. See also here (Google books).

Andrew C. Scott and Ian J. Glasspool (2006): The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PDF file, PNAS, 103: 10861-10865. See also here.

! A.C. Scott (2000): The Pre-Quaternary history of fire. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 164: 297–345. See also here (in PDF).

Andrew C Scott, Research Group in Plant Palaeobiology, Applied Palaeobotany, Palynology and the Study of Fossil Fuels, Geology Department, Royal Holloway University of London, Egham, Surrey: History and impact of fire: Pre-Quaternary.

Wenjie Shen et al. (2011): Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. PDF file, Geochimica et Cosmochimica Acta, 75: 1992-2006.

V. Soni and D. Singh (2013): Petrographic evidence as an indicator of volcanic forest fire from the Triassic of Allan Hills, South Victoria Land, Antarctica. In PDF, Current Science, 104.

Tall Timbers Research Station: E.V. Komarek Fire Ecology Database. Use this database as a unique resource for locating a broad range of fire-related information. Literature on control of wildfires as well as applications of prescribed burning is included.

! Tall Timbers Research Station: Thesaurus. This thesaurus is a list of words and phrases used to describe the topics of the citations in the Tall Timbers Fire Ecology Database. Snapshot taken by the Internet Archive´s Wayback Machine.

! J.L. Torero (2013): Starting on PDF page 21:
An Introduction to Combustion in Organic Materials. PDF file in:
Belcher, C.M. (ed.): Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. (John Wiley & Sons) See also here.

! D. Uhl et al. (2008): Permian and Triassic wildfires and atmospheric oxygen levels. PDF file.

University World News (August 08, 2010): New technique estimates past oxygen levels.

U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory: Fire Effects Information System (FEIS). FEIS provides up-to-date information about fire effects on plants and animals. The database contains synoptic descriptions, taken from current English-language literature of almost 900 plant species and about 100 animal species on the North American continent. The emphasis of each synopsis is fire and how it affects each species.

U.S. Geological Survey, U.S. Department of the Interior, Reston, VA: Wildfires.

Lluís Vilar, Universitat de Girona: The effect of fire on flora and vegetation.
This expired link is available through the Internet Archive´s Wayback Machine.

S.I. Vogel et al. (2011): The Effects of Fire on Lycopodium digitatum strobili. In PDF, Jeffersoniana, 27: 1-9.

! C. Whitlock and C. Larsen (2001): Charcoal as fire proxy. PDF file, In: Smol, J.P., Birks, H.J.B. and Last, W.M. (eds): Tracking Environmental Change Using Lake Sediments: Volume 3: Terrestrial, Algal, and Siliceous Indicators.
Now provided by the Internet Archive´s Wayback Machine.

K.E. ZEIGLER, A.B. HECKERT, and S.G. LUCAS: Taphonomic analysis of a fire-related Upper Triassic vertebrate fossil assemblage from north-central New Mexico. PDF file; New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p.341-351.















Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated July 30, 2017

















eXTReMe Tracker