Links for Palaeobotanists

Home / Charcoal & Coal Petrology

Charcoal & Coal Petrology

Fossil Charcoal
Wildfire and Present Day Fire Ecology
Coal Petrology
! Triassic Charcoal@
! Modern Day Vegetation Recovery@
Teaching Documents about Palaeobotany@
Teaching Documents about Taphonomy@
Teaching Documents about Plant Anatomy@
Teaching Documents about Wood Anatomy and Tree-Ring Research@
Teaching Documents about Ecology@
Sedimentology and Sedimentary Rocks@
Glossaries, Dictionaries and Encyclopedias: Geology@
Glossaries, Dictionaries and Encyclopedias: Palaeontology@
Glossaries, Dictionaries and Encyclopedias: Botany@
Glossaries, Dictionaries and Encyclopedias: Biology@
Glossaries, Dictionaries and Encyclopedias: Environment@

Home / Charcoal & Coal Petrology / Fossil Charcoal

Wildfire and Present Day Fire Ecology
Coal Petrology
! Triassic Charcoal@
Teaching Documents about Palaeobotany@
Teaching Documents about Taphonomy@
Teaching Documents about Plant Anatomy@
Teaching Documents about Wood Anatomy and Tree-Ring Research@
Teaching Documents about Ecology@
Sedimentology and Sedimentary Rocks@
Glossaries, Dictionaries and Encyclopedias: Geology@
Glossaries, Dictionaries and Encyclopedias: Palaeontology@
Glossaries, Dictionaries and Encyclopedias: Botany@
Glossaries, Dictionaries and Encyclopedias: Biology@
Glossaries, Dictionaries and Encyclopedias: Environment@

Fossil Charcoal

First of all ....

Please take notice: Links for Palaeobotanists:
! Fossil charcoal from the Triassic now on a separate website

K.L. Alvin et al. (1981): Anatomy and palaeoecology of Pseudofrenelopsis and associated conifers in the English Wealden. PDF file, Palaeontology, 24: 759-778.

Philippa L. Ascough et al. (2010): Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. PDF file, Journal of Archaeological Science. About charcoal, reflectance, Raman spectroscopic measurements, oxidative degradation, black carbon, diagenesis.

Eleni Asouti, School of Archaeology, Classics and Egyptology, University of Liverpool: Charcoal Analysis Web. Bibliographic suggestions and information about methodology and interpretation as well as links to databases and research centres and wood reference collections. Go to:
A short history of charcoal analysis (regrettably without results and progress in palaeobotany and geology/palaeontology, e.g. W.G. Chaloner, A.C. Scott, M.E. Collinson, T. Jones).
! See also: Cecilia A. Western Wood Reference Collection Archive: The Wood Anatomy Notebooks. Descriptions (typewriter, in PDF) and images (jpg). Mainly species from Southwest Asia and Southeast Europe, donated to the Institute of Archaeology by Cecilia A. Western.

S.J. Baker et al. (2017): Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. In PDF, Nat Commun., 8: 15018. See also here.

Maria von Balthazar et al., (2007): Potomacanthus lobatus gen. et sp. nov., a new flower of probable Lauraceae from the Early Cretaceous (Early to Middle Albian) of eastern North America. The charcoalified fossil flower Potomacanthus lobatus. Abstract, American Journal of Botany, 94: 2041-2053.

C.M. Belcher and V.A. Hudspith (2017): Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytologist, 213: 1521–1532.

Claire M. Belcher et al. (2010): Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. In PDF, Nature Geoscience, 3: 426-429. See also here (abstract).

M.I. Bird et al. (2008): X-ray microtomographic imaging of charcoal. In PDF, Journal of Archaeological Science, 35: 2698-2706. See also here (abstract).

J.R. Boutain et al. (2010): Simplified procedure for hand fracturing, identifying, and curating small macrocharcoal remains. In PDF, IAWA Journal, 31: 139-147.

! David M.J.S. Bowman et al. (2009): Fire in the Earth System. Abstract, Science, 324: 481-484.

B.A. Byers et al. (2014): First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 411: 180-187. See also here.

The Field Museum, Chicago, IL:
Focus: Fossil Plants. See especially:
! Mesofossils.

! Ilit Cohen-Ofri et al. (2006): Modern and fossil charcoal: aspects of structure and diagenesis. PDF file, Journal of Archaeological Science, 33: 428-439.

Margaret E. Collinson et al. (2008): Discussion on the production and fate of charcoals following a heathland and peatland fire in Surrey, UK. Abstract, 18th Plant Taphonomy Meeting, Vienna, Austria. Now provided by the Internet Archive´s Wayback Machine.

! M.J. Cope and W.G. Chaloner (1980): Fossil charcoal as evidence of past atmospheric composition. Abstract, Nature 283: 647-649.

! W.L. Crepet et al. (2004): Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. In PDF, American Journal of Botany, 91: 1666-1682.
! Beautifully preserved charcoalified flowers!

! Walter L. Cressler (2001): Evidence of Earliest Known Wildfires. Abstract, PALAIOS, 16: 171-174.

Charles Daghlian (Dartmouth College, Hannover, NH) and Jennifer Svitko, Paleobotanical Holdings at the Liberty Hyde Bailey Hortorium at Cornell University: Paleoclusia 3D Reconstructions. Movies from CT scans done on the Turonian fossils. See also here (W.L. Crepet and K.C. Nixon 1998, abstract and photos).
These expired links are available through the Internet Archive´s Wayback Machine.

I. Degani-Schmidt and M. Guerra-Sommer (2016): Charcoalified Agathoxylon-type wood with preserved secondary phloem from the lower Permian of the Brazilian Parana Basin. Abstract, Review of Palaeobotany and Palynology, 226: 20-29. See also here (in PDF).

I. Degani-Schmidt et al. (2015): Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil). Abstract, International Journal of Coal Geology, 146: 55–67. See also here (in PDF).

! G. De Lafontaine et al. (2011): Permineralization process promotes preservation of Holocene macrofossil charcoal in soils. In PDF, Journal of Quaternary Science, 26.

! C.F.K. Diessel (2010): The stratigraphic distribution of inertinite. In PDF, International Journal of Coal Geology, 81: 251–268. See also here (abstract).

! W.A. DiMichele and H.J. Falcon-Lang (2011): Pennsylvanian "fossil forests" in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. PDF file, Journal of the Geological Society, London, 168: 585-605. See fig. 14 (PDF page 17), Animals using hollow Sigillarian stumps as refuges from fire.

! W.A. DiMichele et al. (2004): An unusual Middle Permian flora from the Blaine Formation (Pease River Group: Leonardian-Guadalupian Series) of King County, West Texas. In PDF, J. Paleont., 78: 765-782. Paper awarded with the Remy and Remy Award 2005, Botanical Society of America.

Helena Eklund et al. (2004): Late Cretaceous plant mesofossils from Table Nunatak, Antarctica. PDF file, Cretaceous Research, 25: 211-228. Charred and structurally preserved plant remains.
Snapshot provided by the Internet Archive´s Wayback Machine.

DIANNE EDWARDS and LINDSEY AXE: Anatomical Evidence in the Detection of the Earliest Wildfires. Abstract, Palaios; 2004; v. 19; no. 2; p. 113-128.

Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK: Research activities,
Taphonomy of charcoal,
Charcoals in volcanics,
History and impact of fire: Pre-Quaternary, and
History and impact of fire: Recent.

H.J. Falcon-Lang et. al. (2016): The oldest Pinus and its preservation by fire. Abstract, Geology, 44: 303-306. See also here (in PDF).

H.J. Falcon-Lang et al. (2004): Palaeoecology of Late Cretaceous polar vegetation preserved in the Hansen Point Volcanics, NW Ellesmere Island, Canada. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 212: 45-64.
Charred woods from the Hansen Point Volcanics.

! H.J. Falcon-Lang et al. (2001): Fire-prone plant communities and palaeoclimate of a Late Cretaceous fluvial to estuarine environment, Pecínov quarry, Czech Republic. PDF file, Geol. Mag., 138: 563-576.

The Field Museum, Chicago: Fossil Plants Collections Mesofossils. Mid to late Cretaceous plant fossils in charcoal preservation.

! E.M. Friis et al. (2014): Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): new insights into Cretaceous plant diversity. In PDF, Journal of Paleontology, 88: 684–701. See also here (abstract).

Else Marie Friis, Kaj Raunsgaard Pedersen and Peter R. Crane (2010): Diversity in obscurity: fossil flowers and the early history of angiosperms. PDF file, Phil. Trans. R. Soc. B, 365: 369-382. Some of the specimens are charcoalified and have retained their original three-dimensional shape. See also here.

I.J. Glasspool et al. (2015): The impact of fire on the Late Paleozoic Earth system. In PDF, Frontiers in PlantScience. See also here.

! I.J. Glasspool and A.C. Scott 2010): Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Abstract, Nature Geoscience, 3:627-630.

H. Hagdorn et al. (2015): 15. Fossile Lebensgemeinschaften im Lettenkeuper.- p. 359-385. In: Hagdorn, H., Schoch, R. & Schweigert, G. (eds.): Der Lettenkeuper - Ein Fenster in die Zeit vor den Dinosauriern. - Palaeodiversity Supplement (Staatliches Museum für Naturkunde Stuttgart). Go to PDF page 5:
! Charcoal from the germanotype Lettenkohle (Ladinian).

C. Hartkopf-Fröder et al. (2011): Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies. In PDF, Biol. Lett., 8: 295-298. See also here.

Christoph Hartkopf-Fröder, Geologischer Dienst Nordrhein-Westfalen, Krefeld: Das Erbe des Feuers: Was sagen schwarze Steine über die Umwelt der letzten 360 Millionen Jahre? PDF file, in German.
Snapshot provided by the Internet Archive´s Wayback Machine.

! J. Hilton et al. (2016): Age and identity of the oldest pine fossils: COMMENT. Geology, 44. See also:
! Reaffirming Pinus mundayi as the oldest known pine fossil: REPLY. By H.J. Falcon-Lang et al., 2016.
Please take notice:
The oldest Pinus and its preservation by fire. Abstract, by H.J. Falcon-Lang et al., 2016.

! V.A. Hudspith and C.M. Belcher (2017): Observations of the structural changes that occur during charcoalification: implications for identifying charcoal in the fossil record. In PDF, Palaeontology, 60: 503–510. See also here (abstract).

V.A. Hudspith et al. (2015): Latest Permian chars may derive from wildfires, not coal combustion. Reply, in PDF, Geology, 43.

V.A. Hudspith et al. (2014): Latest Permian chars may derive from wildfires, not coal combustion. In PDF, Geology, 42: 879-882. See also here (abstract).

! V. Hudspith et al. (2012): Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia. In PDF, International Journal of Coal Geology, 89: 3–25.

! V. Iglesias et al. (2014): Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling. Front Plant Sci, 5.

A. Jasper et al. (2016): Indo-Brazilian Late Palaeozoic wildfires: an overview on macroscopic charcoal. In PDF, Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, 16: 87-97.

A. Jasper et al. (2016): Fires in the mire: repeated fire events in Early Permian "peat forming" vegetation of India. Abstract, Geological Journal.
See also here.

! A. Jasper et al. (2012): The burning of Gondwana: Permian fires on the southern continent - a palaeobotanical approach. In PDF, Gondwana Research. See also here (abstract).

A. Jasper et al. (2011): Upper Paleozoic charcoal remains from South America: Multiple evidences of fire events in the coal bearing strata of the Paraná Basin, Brazil. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 306: 205-218.

André Jasper et al. (2011): Charcoal remains from a tonstein layer in the Faxinal Coalfield, Lower Permian, southern Paraná Basin, Brazil. An. Acad. Bras. Ciênc., 83.

André Jasper et al. (2008): Palaeobotanical evidence of wildfires in the Late Palaeozoic of South America. Early Permian, Rio Bonito Formation, Paraná Basin, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences, 26: 435-444.

Tim Jones, Particle Research Group, School of Biosciences, Cardiff University: Images of a soot-encrusted piece of charcoal from the K-T boundary and of one of the largest piece of naturally produced charcoal (recent) from the Yellowstone National Park, USA.

! T.P. Jones and W.G. Chaloner (1991): Fossil charcoal, its recognition and palaeoatmospheric significance. Abstract.

K.-P. Kelber, (2007): Die Erhaltung und paläobiologische Bedeutung der fossilen Hölzer aus dem süddeutschen Keuper (Trias, Ladinium bis Rhätium).- In German. PDF file, pp. 37-100; In: Schüßler, H. & Simon, T. (eds.): Aus Holz wird Stein - Kieselhölzer aus dem Keuper Frankens.- (Eppe), Bergatreute-Aulendorf. Go to PDF page 9:
! Charcoal from the germanotype Upper Triassic.

Michael A. Kruge, Dept. of Geology Southern Illinois Univ., Carbondale, IL: Chemistry Of Fossil Charcoal In Cretaceous-Tertiary Boundary Strata, Arroyo El Mimbral, Mexico.

! J. Lehmann et al. (2011): Biochar effects on soil biota - a review. In PDF, Soil Biology & Biochemistry, 43: 1812-1836. See also here (abstract).

! E.R. Locatelli (2014): The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record. PDF file, In: M. Laflamme et al. (eds.): Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers, 20.

S. Mahesh et al. (2015): Fossil charcoal as Palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of South Karanpura coalfield. In PDF, Journal of the Geological Society of India, 85: 567-576. See also here.

J. Manfroi et al. (2015): Extending the database of Permian palaeo-wildfire on Gondwana: Charcoal remains from the Rio do Rasto Formation (Paraná Basin), Middle Permian, Rio Grande do Sul State, Brazil. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 436: 77-84.

! L. Marynowski et al. (2014): Molecular composition of fossil charcoal and relationship with incomplete combustion of wood. Abstract, Organic Geochemistry, 77: 22–31. See also here (in PDF).

L. Marynowski and B.R.T. Simoneit (2009): Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. In PDF, Palaios. See also here (abstract).

J.R. Marlon (2009): The geography of fire: A paleo perspective. PDF file.

! L.C. McParland et al. (2010): Is vitrification in charcoal a result of high temperature burning of wood? Abstract, Journal of Archaeological Science, 37: 2679–2687. See also here (in PDF).

Limnological Research Center, University of Minnesota, Minneapolis:
LRC Core Facility, Floral and faunal components, Charcoal counting (sieve method). Procedure writeup (PDF file).
These expired links are available through the Internet Archive´s Wayback Machine.

! I.P. Montañeza (2016): A Late Paleozoic climate window of opportunity. In PDF, PNAS, Proceedings of the National Academy of Sciences, 113. See also here (abstract).

M. Moskal-del Hoyo et al. (2010): Preservation of fungi in archaeological charcoal. PDF file, Journal of Archaeological Science, 37: 2106-2116.

Nano, 3sat Online: Urzeitliche Waldbrände (in German). Fossil charcoal from the Rohdenhaus quarry, Germany.

! National Oceanic and Atmospheric Administration (NOAA), Washington, DC. NOAA Paleoclimatology. NOAA Paleoclimatology operate the World Data Center for Paleoclimatology which distributes data contributed by scientists around the world. Paleo data come from natural sources such as tree rings, ice cores, corals, and ocean and lake sediments, and extend the archive of climate back hundreds to millions of years. Go to:
International Multiproxy Paleofire Database (IMPD). The IMPD is an archive of fire history data derived from natural proxies (including data from tree scars and charcoal in sediment records).

J.T. Parrish et al. (2004): Jurassic "savannah"-plant taphonomy and climate of the Morrison Formation (Upper Jurassic, Western USA). In PDF, Sedimentary Geology.

! W.A. Patterson et al. (1987): MICROSCOPIC CHARCOAL AS A FOSSIL INDICATOR OF FIRE. PDF file, Quaternary Science Reviews, 6: 3-23.

J.G. Pausas and D. Schwilk (2012): Fire and plant evolution. In PDF, New Phytologist, 193: 301-303.

! J.G. Pausas and J.E. Keeley (2009): A burning story: the role of fire in the history of life. PDF file, BioScience, 59: 593-601.

H.I. Petersen and S. Lindström (2012): Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic-Jurassic Boundary. In PDF.

! M.K. Putz and E.L. Taylor (1996): Wound response in fossil trees from Antarctica and its potential as a paleoenvironmental indicator. PDF file, IAWA Journal, Vol. 17.

S. Riehl et al. (2014): Plant use and local vegetation patterns during the second half of the Late Pleistocene in southwestern Germany. In PDF, Archaeol. Anthropol. Sci.

S.M. Rimmer et al. (2015): The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change. In PDF, American Journal of Science, 315: 713-733.

Paul Rincon, BBC News Online: Fossils reveal oldest wildfire.

V. Robin and O. Nelle (2011): Main data and general insights of recent soil charcoal investigations on nine sites in Central Europe. In PDF.

! B.E. Robson et al. (2015): Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 53-62. See also here.

Earth Sciences, Royal Holloway University of London: Wildfire in Deep time.

! A.C. Scott (2010): Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 11–39. See also here (abstract).

! Andrew C. Scott and Freddy Damblon (2010): Charcoal: Taphonomy and significance in geology, botany and archaeology. Abstract.

Andrew C. Scott et al. (2009): Scanning Electron Microscopy and Synchrotron Radiation X-Ray Tomographic Microscopy of 330 Million Year Old Charcoalified Seed Fern Fertile Organs. PDF file, Microsc. Microanal., 15: 166-173. See figure 4, SEM of charcoalified pteridosperm ovule from the mid-Mississippian (Carboniferous). See also here.

Andrew C. Scott and Ian J. Glasspool (2006): The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PDF file, PNAS, 103: 10861-10865. See also here.

! A.C. Scott (2002): Coal petrology and the origin of coal macerals: a way ahead? In PDF, International Journal of Coal Geology, 50: 119-134. The definition of fusinite !

! A.C. Scott (2000): The Pre-Quaternary history of fire. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 164: 297–345. See also here (in PDF).

! A.C. Scott (1998): The legacy of Charles Lyell: advances in our knowledge of coal and coal-bearing strata. In PDF, Geological Society, London, Special Publications, 143: 243-260. See also here.

! A.C. Scott (1990): 3.10 Anatomical Preservation of Fossil Plants. PDF file, scroll to page 263! Provided by the Internet Archive´s Wayback Machine.
Article in: Derek Briggs and Peter Crowther (eds.): Paleobiology: A Synthesis. Navigate from the contents file (PDF).

Andrew C. Scott and Freddy Damblon, discussion paper: Discussion on (and formation of?) an International Association for Charcoal Research (IACR). PDF file. Including a useful bibliography.

Andrew C Scott, Research Group in Plant Palaeobiology, Applied Palaeobotany, Palynology and the Study of Fossil Fuels, Geology Department, Royal Holloway University of London, Egham, Surrey: History and impact of fire: Pre-Quaternary.

Megan Sever, Geotimes: Charcoal clues in dinosaur debate. Web Extra Friday, January 9, 2004.

! Shu-zhong Shen et al. (2011): Calibrating the End-Permian Mass Extinction. In PDF, Science, 334.
Snapshot provided by the Internet Archive´s Wayback Machine.
See also here (abstract).

Wenjie Shen et al. (2011): Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. PDF file, Geochimica et Cosmochimica Acta, 75: 1992-2006.

M.W. Simas et al. (2013): An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a lower Permian tonstein layer (Faxinal Coalfield, Paraná Basin, Brazil). In PDF, Geologica Acta, 11: 45-57.

B.J. Slater et al. (2015): A high-latitude Gondwanan lagerstätte: The Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. In PDF, Gondwana Research, 27: 1446-1473. See also here (abstract).

C.R. Smith (2004): Florida Harvester Ants and Their Charcoal. In PDF, Electronic Thesis, Florida State University Libraries.
"Pogonomyrmex harvester ants collect and deposit pebbles, charcoal, glass, etc. atop their mounds".

Smithsonian Science: Fungi still visible in wood charcoal centuries after burning.

D.C. Steart et al. (2007): The Cobham Lignite Bed: the palaeobotany of two petrographically contrasting lignites from either side of the Paleocene-Eocene carbon isotope excursion. PDF file, Acta Palaeobotanica 47: 109-125.
This expired link is available through the Internet Archive´s Wayback Machine.

J. Stevenson and S.G. Haberle (2005): Macro Charcoal Analysis: A modified technique used by the Department of Archaeology and Natural History. In PDF, PalaeoWorks Technical Report, 5.

Y. Sun et al. (2017): Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin. In PDF, Lithosphere. See also here.

! I. Suárez-Ruiz et al. (2012): Review and update of the applications of organic petrology: Part 1, geological applications. In PDF, International Journal of Coal Geology, 99: 54-112.

! S.C. Sweetman and A.N. Insole (2010): The plant debris beds of the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern England: their genesis and palaeontological significance. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 292: 409-424.

L.H. Tanner et al. (2012): Fossil charcoal from the Middle Jurassic of the Ordos Basin, China and its paleoatmospheric implications. In PDF.

D. Uhl (2013): The paleoflora of Frankenberg/Geismar (NW-Hesse, Germany) - a largely unexplored "treasure chest" of anatomically preserved plants from the Late Permian (Wuchiapingian) of the Euramerican floral province. PDF file; In: Lucas, S.G., et al. eds., The Carboniferous-Permian Transition. New Mexico Museum of Natural History and Science. Bulletin, 60, 433-443.

D. Uhl et al. (2012): Wildfires in the Late Palaeozoic and Mesozoic of the Southern Alps - The Late Permian of the Bletterbach-Butterloch area (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 118: 223-233.

D. Uhl et al. (2012): Charcoal in the Late Jurassic (Kimmeridgian) of Western and Central Europe - palaeoclimatic and palaeoenvironmental significance. In PDF, Palaeobio. Palaeoenv., 92: 329-341.

! D. Uhl et al. (2008): Permian and Triassic wildfires and atmospheric oxygen levels. In PDF, 1st WSEAS International Conference on Environmental and Geological Science and Enginering, Malta.

University World News (August 08, 2010): New technique estimates past oxygen levels.

! C. Whitlock and C. Larsen (2001): Charcoal as fire proxy. PDF file, In: Smol, J.P., Birks, H.J.B. and Last, W.M. (eds): Tracking Environmental Change Using Lake Sediments: Volume 3: Terrestrial, Algal, and Siliceous Indicators.
Now provided by the Internet Archive´s Wayback Machine.

Wikipedia, the free encyclopedia:
Fossil record of fire.

J. Yans et al. (2010): Carbon-isotope analysis of fossil wood and dispersed organic matter from the terrestrial Wealden facies of Hautrage (Mons Basin, Belgium). In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 85-105.

! E.L. Zodrow et al. (2010): Medullosalean fusain trunk from the roof rocks of a coal seam: Insight from FTIR and NMR (Pennsylvanian Sydney Coalfield, Canada). In PDF, International Journal of Coal Geology, 82: 16-124.

Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
Last updated October 04, 2017