The Pros and Cons of Pre-Neogene Growth Rings, Links for Palaeobotanists
Links for Palaeobotanists

Home / Palaeoclimate / The Pros and Cons of Pre-Neogene Growth Rings


Categories
Focused on Palaeoclimate
Tree-Ring Research (Dendrochronology) in General
Leaf Size and Shape and the Reconstruction of Past Climates
The Rise of Oxygen and the Global Carbon Cycle

! Permineralized Plants and Petrified Forests@
! Triassic Climate@

! Teaching Documents about Wood Anatomy and Tree-Ring Research@
! Fungal Wood Decay: Evidence from the Fossil Record@
Teaching Documents about Plant Anatomy@
Trees@
Teaching Documents about Botany@
Fossil Charcoal@
Coal Petrology@
Introductions to both Fossil and Recent Plant Taxa@
Teaching Documents about Palaeoclimate@
Teaching Documents about Palaeobotany@


The Pros and Cons of Pre-Neogene Growth Rings


! Laureen Sally da Rosa Alves and Margot Guerra-Sommer (2007): Paleobotany and Paleoclimatology Part I: Growth Rings in Fossil Woods and Paleoclimates. PDF file; See also starting with PDF-page 16:
Part II: Leaf Assemblages (Taphonomy, Paleoclimatology and Paleogeography). In: Koutsoukos, Eduardo A.M. (ed.) Applied Stratigraphy. Series: Topics in Geobiology, Vol. 23.
See also here (in PDF) and there (Google books).

S. Archangelsky (1968): Studies on Triassic fossil plants from Argentina. IV. The leaf genus Dicroidium and its possible relation to Rhexoxylon stems. PDF file, Palaeontology.

S.R. Ash and G.T. Creber (2000): The Late Triassic Araucarioxylon arizonicum trees of the Petrified Forest National Park, Arizona, USA. In PDF.

M.K. Bamford et al. (2016): Long overdue extinction of the Protopinaceae. Abstract.

Department of Plant and Microbial Biology, University of California, Berkeley: Plant Tissues, Wood, Growth Rings, Bark. Begin Photosynthesis. Lecture notes. Snapshot taken by the Internet Archive´s Wayback Machine.

! R.T. Bolzon et al. (2004): Fossildiagênese de lenhos do Mesozóico do Estado do Rio Grande do Sul, Brasil. PDF file, in Portuguese. Revista Brasileira de Paleontologia, 7: 103-110.
About wood fossil diagenesis, e.g. the preservation of the cells of fossil wood, the form of wood mineralization, especially the silicification of wood.

! C.K. Boyce et al. (2001): Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils. In PDF, PNAS, 98.

! K.R. Briffa et al. (2004): Large-scale temperature inferences from tree rings: a review. In PDF, Global and Planetary Change, 40: 11-26.

A .-L.Brison et al. 2001): Are Mesozoic wood growth rings climate-induced? Abstract, Paleobiology: Vol. 27, No. 3, pp. 531–538.

! C.R. Brodersen et al. (2011): Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. In PDF, New Phytologist, 191: 1168-1179.

B.A. Byers et al. (2014): First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire. Abstract. See also here (in PDF).

O. Cambra-Moo et al. (2013): Exceptionally well-preserved vegetal remains from the Upper Cretaceous of "Lo Hueco", Cuenca, Spain. In PDF, Lethaia, 46: 127–140.

W. Chaloner & G. Creber: Do fossil plants give a climatic signal? Abstract, Journal of the Geological Society, Volume 147, Number 2, 1990, pp. 343-350.

! J. Chave et al. (2009): Towards a worldwide wood economics spectrum. In PDF, Ecology Letters, 12: 351–366.

Adrionna Cook: Do Fossil Tree Rings Have Evidence of Global Warming During the Dinosaur Age? PDF file, see also here, and there.

Geoffrey T. Creber and Margaret E. Collinson (2006): Epicormic shoot traces in the secondary xylem of the Triassic and Permian fossil conifer species Woodworthia arizonica - Short communication. PDF file, IAWA Journal, 27: 237-241.

G.T. Creber & S.R. Ash (2004): The Late Triassic Schilderia adamanica and Woodworthia arizonica Trees of the Petrified Forest National Park, Arizona, USA. Abstract, Palaeontology Volume 47: 21. See also here (in PDF).

A. Crisafulli et al. (2016): In-situ Late Triassic fossil conifer woods from the fluvial channel deposits of the Soturno River (Caturrita Formation, Rio Grande do Sul, Brazil). In PDF, Gaea, Journal of Geoscience, 9: 37-46.

N. Rubén Cúneo et al. (2003): In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 197: 239-261.

A.-L. Decombeix et al. (2016): Bark anatomy of Late Permian glossopterid trees from Antarctica. Abstract, IAWA Journal, 37: 444-458. See also here (in PDF).

A.-L. Decombeix et al. (2014): New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. In PDF, see also here.

A.-L. Decombeix et al. (2011): Root suckering in a Triassic conifer from Antarctica: Paleoecological and evolutionary implications. In PDF, American Journal of Botany, 98: 1222-1225. See also here (abstract).

A.L. Decombeix et al. (2010): Anatomy and affinities of permineralized gymnospermous trunks with preserved bark from the Middle Triassic of Antarctica. In PDF, Review of Palaeobotany and Palynology, 163.

Anne-Laure Decombeix, Brigitte Meyer-Berthaud, Nick Rowe & Jean Galtier: Diversity of large woody lignophytes preceding the extinction of Archaeopteris: new data from the middle Tournaisian of Thuringia (Germany). PDF file.

I. Degani-Schmidt and M. Guerra-Sommer (2016): Charcoalified Agathoxylon-type wood with preserved secondary phloem from the lower Permian of the Brazilian Parana Basin. Abstract, Review of Palaeobotany and Palynology, 226: 20-29. See also here (in PDF).

T. Drouet et al.: Long-term records of strontium isotopic composition in tree rings ... PDF file, Global Change Biology, 2005.

T. Eglin et al. (2008): Biochemical composition is not the main factor influencing variability in carbon isotope composition of tree rings. PDF file, Tree Physiology, 28: 1619-1628.

! H.J. Falcon-Lang and D.M. Digrius (2014): Palaeobotany under the microscope: history of the invention and widespread adoption of the petrographic thin section technique. In PDF.

! H.J. Falcon-Lang (2000): A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: a new palaeoecological tool. In PDF, Palaeontology.

Howard J. Falcon-Lang (2005): Global climate analysis of growth rings in woods, and its implications for deep-time paleoclimate studies. Abstract, Paleobiology: Vol. 31, No. 3, pp. 434–444.
See also here.

H.J. Falcon-Lang et al. (2004): Palaeoecology of Late Cretaceous polar vegetation preserved in the Hansen Point Volcanics, NW Ellesmere Island, Canada. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 212: 45-64.
Note PDF page 14: Growth rings in woods.

H.J. Falcon-Lang and D.J. Cantrill (2001): Leaf phenology of some mid-Cretaceous polar forests, Alexander Island, Antarctica. Abstract, Geological Magazine.

J.E. Francis, Earth Sciences, University of Leeds: Fossil Trees in the Basal Purbeck Formation on Portland - The Great Dirt Bed Forest. See also here.

T.L. Fletcher et al. (2015): Wood growth indices as climate indicators from the Upper Cretaceous (Cenomanian-Turonian) portion of the Winton Formation, Australia. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 417: 35-43.

J.E. Francis et al.: Deciduous and evergreen habit for Cretaceous polar conifers? Abstract, GSA 2003 Seattle Annual Meeting.

Robert A. Gastaldo, Department of Geology, Colby College, Waterville, Maine: PLANTS AS KEYS TO PAST CLIMATIC CONDITIONS.

E.L. Gulbranson et al. (2012): Permian polar forests: deciduousness and environmental variation. In PDF, Geobiology, 10: 479-495.

E.L. Gulbranson and P.E. Ryberg (2013): Paleobotanical and geochemical approaches to studying fossil tree rings: Quantitative interpretations of paleoenvironment and ecophysiology. In PDF, Palaios, 28: 137-140. See also here.

R.D. Heady and G.E. Burrows (2008): Features of the secondary xylem that facilitate branch abscission in juvenile Wollemia nobilis. In PDF, IAWA Journal, 29: 225-236.

L.A. Hoffman and A.M.F. Tomescu (2013): An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada). In PDF, American Journal of Botany, 100: 754-763.

Z. Jiang et al. (2016): A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution. Sci. Rep., 6.

K.-P. Kelber, Würzburg (2007): Die Erhaltung und paläobiologische Bedeutung der fossilen Hölzer aus dem süddeutschen Keuper (Trias, Ladinium bis Rhätium).- In German. PDF file, 33 MB! pp. 37-100; In: Schüßler, H. & Simon, T. (eds.): Aus Holz wird Stein - Kieselhölzer aus dem Keuper Frankens.- (Eppe), Bergatreute-Aulendorf.
Growth rings in wood from the germanotype Keuper (Upper Triassic) in fig. 11f (on PDF page 18) and fig. 14f (on PDF page 20).

K. Kim et al. (2005): Coniferous Fossil Woods from the Jogyeri Formation (Upper Triassic) of the Nampo Group, Korea. PDF file, IAWA Journal, 26: 253-265.

L. Luthardt and R. Rößler (2017): Fossil forest reveals sunspot activity in the early Permian. Abstract, Geology. See also here (in PDF).

L. Luthardt et al. (2016): Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—Sedimentological, geochemical and palaeobotanical evidence. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 627–652. See also here.

C. Macfarlane and M.A. Adams: .13C of wood in growth-rings indicates cambial activity of ... PDF file.

L. Marynowski et al. (2011): Effects of weathering on organic matter Part II: Fossil wood weathering and implications for organic geochemical and petrographic studies. In PDF, Organic Geochemistry, 42: 1076-1088.

! B. Meyer-Berthaud et al. (2013): Archaeopterid root anatomy and architecture: new information from permineralized specimens of Famennian age from Anti-Atlas (Morocco). In PDF, Int. J. Plant Sci., 174: 364–381.

Sandra Niemirowska, Warsaw: Petrified Wood. Various species of fossilized wood taken under the microscope and shown in tomograms.
Worth checking out:
! Anatomical details under the stereoscopic optical microscope and scanning electron microscope.
Gallery of petrified wood. A collection of petrified wood arranged in order of locations.

C. Oh et al. (2015): Xenoxylon synecology and palaeoclimatic implications for the Mesozoic of Eurasia. In PDF, Acta Palaeontologica Polonica, 60: 245-256. See also here.

M. Philippe et al. (2016): The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology.

! M. Philippe et al. (2015): News from an old wood - Agathoxylon keuperianum (Unger) nov. comb. in the Keuper of Poland and France. Abstract, Review of Palaeobotany and Palynology, 221: 83–91. See also here (in PDF).

Marc Philippe (2011): How many species of Araucarioxylon? Abstract, Comptes Rendus Palevol., 10: 201-208.

! M. Philippe and M.K. Bamford (2008): A key to morphogenera used for Mesozoic conifer-like woods. PDF file, Review of Palaeobotany and Palynology, 148: 184-207. See also here (abstract).

ETIENE F. PIRES and MARGOT GUERRA-SOMMER: Sommerxylon spiralosus from Upper Triassic in southernmost Paraná Basin (Brazil): a new taxon with taxacean affinity. PDF file; Anais da Academia Brasileira de Ciências (2004)76(3):595-609; (Annals of the Brazilian Academy of Sciences).

! J. Pittermann et al. (2015): The structure and function of xylem in seed-free vascular plants: an evolutionary perspective. In PDF. See also here.

! M.K. Putz and E.L. Taylor (1996): Wound response in fossil trees from Antarctica and its potential as a paleoenvironmental indicator. PDF file, IAWA Journal, Vol. 17.

J.A. Raven and M. Andrews (2010): Evolution of tree nutrition. In PDF, Tree Physiology, 30: 1050-1071. See also here.

! R. Rößler et al. (2014): Which name(s) should be used for Araucaria-like fossil wood? - Results of a poll. In PDF, Taxon, 63: 177-184.

R. Rößler (2009): 300 Jahre Schatzsuche in Chemnitz: Die wissenschaftliche Grabung nach dem versteinerten Wald. In German (PDF file), Fossilien, 26. Provided by the Internet Archive´s Wayback Machine.

P.E. Ryberg and E.L. Taylor, Department of Ecology and Evolutionary Biology; Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence: Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes. PDF file, Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 080.

Patricia E. Ryberg and Edith L. Taylor, University of Kansas, Department of Ecology and Evolutionary Biology: Fossil tree rings as paleoclimatic indicators in the Permian and Triassic of Antarctica. Abstract, Botany 2005, Botanical Society of America.

! X. Shi (2016): Fossil plants and environmental changes during the Permian-Triassic transition in Northwest China. Doctoral dissertation, Université Pierre et Marie Curie, China University of Geosciences Wuhan. See also here (abstract).

Thomas Siccama and Daniel Vogt, Yale School for Forestry and Environmental Studies: Methods of Ecosystem Analysis, Saltonstall Ridge, East Haven, Ct., Tree Rings Introduction. Go to: Challenges to Accurate Tree Ring Measurement. About false rings.
These expired links are available through the Internet Archive´s Wayback Machine.

B.J. Slater et al. (2012): Animal-plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 363-364: 109-126.

! J.S. Sperry (2003): Evolution of water transport and xylem structure. PDF file, International Journal of Plant Sciences.

! Rachel Spicer and Andrew Groover (2010): Evolution of development of vascular cambia and secondary growth. PDF file, New Phytologist, 186: 577-592.

C. Strullu-Derrien (2014): The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Abstract, Botanical Journal of the Linnean Society, 175: 423-437.

H. Süss and K.-P. Kelber (2011): Eine neue Art der Morphogattung Baieroxylon Greguss aus dem Keuper von Franken, Deutschland. In PDF, Feddes Repertorium, 122: 257-267.

H. Süss et al. (2009): Drei neue fossile Hölzer der Morphogattung Primoginkgoxylon gen. nov. aus der Trias von Kenia. PDF file (in German), Feddes Repertorium, 120: 273 - 292. See also here (Abstract).

E.L. Taylor and P.E. Ryberg (2007): Tree growth at polar latitudes based on fossil tree ring analysis. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 255: 246-264. See here.

! E.L. Taylor et al. (1992): The present is not the key to the past: a polar forest from the Permian of Antarctica. In PDF, Science, 257.

N. Tian et al. (2016): New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 65–75. See also here (in PDF).

Susan Trulove, Virginia Tech: Ancient climate record preserved in prehistoric plants. Ancestor of modern trees preserves record of ancient climate change. About Devonian/Carboniferous growth rings.

! Dieter Uhl (2004): Anatomy and taphonomy of a coniferous wood from the Zechstein (Upper Permian) of NW-Hesse (Germany). In PDF, Geodiversitas, 26: 391-401.

! E.A. Vaganov et al. (2011): How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics. In PDF, Dendroclimatology. See also here (abstract).

V. Vajda et al. (2016): Disrupted vegetation as a response to Jurassic volcanism in southern Sweden. In PDF, from: Kear, B. P., Lindgren, J., Hurum, J. H., Milàn, J. & Vajda, V. (eds): Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434.

! Pim F. van Bergen and Imogen Poole (2002): Stable carbon isotopes of wood: a clue to palaeoclimate? PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 182: 31-45.
This expired link is available through the Internet Archive´s Wayback Machine.

Mike Viney, Ft. Collins, Colorado: The Virtual Petrified Wood Museum. Images of fossil wood and other fossils sorted by geological age. See especially:
! The Anatomy of Arborescent Plant Life Through Time.

M. Wan et al. (2015): Xenoxylon junggarensis sp. nov., a new gymnospermous fossil wood from the Norian (Triassic) Huangshanjie Formation in northwestern China, and its palaeoclimatic implications. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology.

Yongdong Wang et al. (2009): Starting on PDF page 13, Biodiversity and palaeoclimatic implications of fossil wood from the non-marine Jurassic of China. PDF file, Episodes, 32.

WAYNE'S WORD, Escondido, CA (A nonprofit quarterly journal published by WOLFFIA INC.): Stem & Root Anatomy. Cellular structure of vascular plants.

! Ian West, Southampton University: The Fossil Forest - East of Lulworth Cove, Dorset.

Wikipedia, the free encyclopedia: Growth ring, and Jahresring (in German).

Jonathan P. Wilson and Andrew H. Knoll (2010): A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. PDF file, Paleobiology, 36: 335-355. Snapshot taken by the Internet Archive´s Wayback Machine.

Yale Forestry School, Methods of Ecosystem Analysis: Challenges to Accurate Measurement of Tree Rings. About false rings.
Provided by the Internet Archive´s Wayback Machine.















Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated September 22, 2017




















eXTReMe Tracker