Links for Palaeobotanists

Home / All about Upper Triassic / Triassic Climate


Categories
Triassic Biotas
Homepages of Triassic Workers
Triassic Literature
Triassic Palaeobotany
Triassic Palynology
Triassic Stratigraphy
The European Keuper: Stratigraphy and Facies
Triassic Charcoal
Triassic Palaeosols
The Rhaetian
Early Triassic Floras
Reconstructions of Triassic Landscapes
Triassic Field Trips

! Palaeoclimate@
! Teaching Documents about Palaeoclimate@
Geologic Time Scale@
Palaeogeography@


Triassic Climate


! A.M.B. Abu Hamad et al. (2012): The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? In PDF, International Journal of Coal Geology, 96–97: 60–71.
See also here (abstract).

A. Ahlberg et al. (2002): Onshore climate change during the Late Triassic marine inundation of the Central European Basin. Abstract.

R. Albert (2014): Die Entstehung und sedimentologische Bedeutung von Steinsalzkristallmarken im fossilen Beleg. PDF file, in German. Steinkern.de.

Albertiana (website now avaialble on SUNY Cortland´s webserver, still edited by Wolfram Kuerschner, Oslo). Albertiana is the official journal of the Subcommission on Triassic Stratigraphy. Its primary aim is to promote the interdisciplinary collaboration and understanding among the members of the IUGS Subcommission on Triassic Stratigraphy. E-Albertiana is formated in Adobe Portable document format (PDF), issues are available for download. See also:
! Geobiology.cn: Albertiana (PDF files). Snapshot taken by the Internet Archive´s Wayback Machine. Scans of the rare early volumes of Albertiana. Excellent!

S. Ash (2010), Go to PDF page 59: Summary of the Upper Triassic flora of the Newspaper Rock Bed and its paleoclimatic implications. PDF file, SEPM-NSF Workshop "Paleosols and Soil Surface Analog Systems", September 21-26, 2010, Petrified Forest National Park, AZ.

A. Rahman Ashraf et al. (2010): Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China - a review and additional lithological data. Abstract, Palaeobiodiversity and Palaeoenvironments, 90: 187-201. See also here (in PDF).

J.J. Beer (2005): Sequence stratigraphy of fluvial and lacustrine deposits in the lower part of the Chinle Formation, south central Utah, United States: paleoclimatic and tectonic implications. In PDF, thesis, Duluth, University of Minnesota. 169 p.
Snapshot taken by the Internet Archive´s Wayback Machine.

D.J. Beerling and R.A. Berner (2005): Feedbacks and the coevolution of plants and atmospheric CO2. In PDF, PNAS, 102.

D.J. Beerling and R.A. Berner (2002): Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. In PDF, Global Biogeochemical Cycles, 16.

Claire M. Belcher et al. (2010): Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. In PDF, Nature Geoscience, 3: 426-429. See also here (abstract).

C.M. Belcher et al. (2010): Burning Questions - how state of the art fire safety techniques can be applied to answer major questions in the Earth Sciences. In PDF. See also here (the slides). Go to PDF page 22: "East Greenland 200 Million years ago".
See also there (Linklist: Fire Safety Engineering in the UK: The State of the Art. University of Edinburgh).

! M.J. Benton and A.J. Newell (2014): Impacts of global warming on Permo-Triassic terrestrial ecosystems. In PDF, Gondwana Research.

! Museum of Paleontology, University of California, Berkely (UCMP): The Triassic Period. Worth checking out: Triassic Period: Localities, Stratigraphy, and Triassic Period: Tectonics and Paleoclimate.

! D.J. Beerling and C.P. Osborne (2002): Physiological ecology of Mesozoic polar forests in a high CO2 environment. Annals of Botany, 89: 329-339.

Nina R. Bonis (2010), Laboratory of Palaeobotany and Palynology, Palaeoecology Institute of Environmental Biology, Department of Biology, Utrecht University: Palaeoenvironmental changes and vegetation history during the Triassic-Jurassic transition. PDF file (7.7 MB), LPP Contribution Series No. 29. Seven research reports (chapters) in this thesis, see especially chapter 7 (with W.M. Kürschner):
! Vegetation history, diversity patterns, and climate change across the Triassic-Jurassic boundary (PDF page 140).

V. Borruel-Abadía et al. (2015): Climate changes during the Early–Middle Triassic transition in the E. Iberian plate and their palaeogeographic significance in the western Tethys continental domain. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 671–689.
See also here.

S. Bourquin et al. (2007): The Permian-Triassic boundary and Early Triassic sedimentation in Western European basins: an overview. PDF file, Journal of Iberian Geology, 33: 221-236. See also here.

N.M. Chumakov and M.A. Zharkov (2003): Climate during the Permian-Triassic biosphere reorganizations. Article 2. Climate of the Late Permian and Early Triassic: general inferences. PDF file, Stratigraphy and Geological Correlation, 11: 361-375. Translated from Stratigrafiya. Geologicheskaya Korrelyatsiya, 11: 55-70. See also:
N.M. Chumakov and M.A. Zharkov (2002): Climate during Permian-Triassic Biosphere Reorganizations, Article 1: Climate of the Early Permian. See also:
M.A. Zharkov and N.M. Chumakov (2001): (web-site hosted by the Laboratory of Arthropods, Palaeontological Institute, Russian Academy of Sciences, Moscow): Paleogeography and Sedimentation Settings during Permian-Triassic Reorganizations in Biosphere.

J.L. Cloudsley-Thompson (2005): Ecology and Behaviour of Mesozoic Reptiles, The Mesozoic Environment. In PDF. See also here,

M.L. Crocker (2012): The dirt on paleosols: sedimentology and paleoclimate indicators within the upper triassic Chinle Formation, Paria, Utah. In PDF. Thesis, Department of Geology and Geophysics, University of Utah.

N. Rubén Cúneo et al. (2003): In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 197: 239-261.

J. Dal Corso (2011): The Middle-Late Triassic d13Cplant trend and the carnian pluvial event C-isotope signature. Ph.D. thesis, University of Padua. See also here (abstract).
Amber from the Triassic of the Italian Alps.

Timothy M. Demko et al. (2005): Mesozoic Lakes of the Colorado Plateau. In PDF, Geological Society of America, Field Guide 6.

J.M. Dickins (1984): Climate of the Triassic as seen from the Permian. PDF file, Albertiana 2.
Provided by the Internet Archive´s Wayback Machine.

T. Dixon (2013): Palynofacies and Palynological Analysis of Late Triassic Sediments from the Kentish Knock-1 Well (Northern Carnarvon Basin, NW Australia). Reconstruction of vegetation history, interpretation of climate and sea level changes and placement in regional zonation. In PDF, thesis, Department of Geosciences, University of Oslo.

Y. Donnadieu et al. (2009): Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO2 and climate history. In PDF, Clim. Past, 5: 85-96.

! R.F. Dubiel and S.T. Hasiotis (2011): Deposystems, paleosols, and climatic variability in a continental system: the Upper Triassic Chinle Formation, Colorado Plateau, USA. In PDF. From River To Rock Record: The Preservation Of Fluvial Sediments And Their Subsequent Interpretation. SEPM Special Publication No. 97.

! R.F. Dubiel et al. (1991): The Pangaean megamonsoon: evidence from the Upper Triassic Chinle Formation, Colorado Plateau. PDF file, Palaios, 6: 347-370.

R.F. Dubiel (1989): Depositional and climatic setting of the Upper Triassic Chinle Formation, Colorado Plateau In PDF, Dawn of the Age of Dinosaurs ...
This expired link is available through the Internet Archive´s Wayback Machine.

R.F. Dubiel (1987): Sedimentology of the Upper Triassic Chinle Formation Southeastern Utah: Paleoclimatic Implications. In PDF, Journal of the Arizona-Nevada Academy of Science.
See fig. 8: Horsetail pith casts, formed when the hollow trunks of the horsetails were broken off and filled with sediment during a flood event.

! Erin Eastwood (2008): Pangean Paleoclimate. PDF file, GEO 387H.

A. Fijalkowska-Mader (2015): A record of climatic changes in the Triassic palynological spectra from Poland. In PDF, Geological Quarterly, 59.

B.J. Fletcher et al. (2008): Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. In PDF, Nat. Geosci., 1: 43-48.

M. Franz et al. (2015): Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin. In PDF, Global and Planetary Change, 135: 1-27. See also here (abstract).

M. Franz et al. (2014): Eustatic control on epicontinental basins: The example of the Stuttgart Formation in the Central European Basin (Middle Keuper, Late Triassic. Abstract.

T. Galfetti et al. (2007): Late Early Triassic climate change: Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 243: 394-411.

Bilal U. Haq et al. (1987): Chronology of fluctuating sea levels since the Triassic. PDF file, Science, 235.

! E. Hermann et al. (2012): Climatic oscillations at the onset of the Mesozoic inferred from palynological records from the North Indian Margin. In PDF, Journal of the Geological Society, London, 169: 227-237.

Carmen Heunisch and Heinz-Gerd Röhling, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover: Permo-Triassic climatic development. Research report (via wayback archive, in German).

B. Hönisch et al. (2012): The Geological Record of Ocean Acidification. In PDF, Science, 135.

M. Holz (2015): Mesozoic paleogeography and paleoclimates - a discussion of the diverse greenhouse and hothouse conditions of an alien world. Abstract, Journal of South American Earth Sciences.

M.W. Hounslow and A. Ruffell (2006): Triassic - seasonal rivers, dusty deserts and salty lakes. PDF file: In: Brenchley, P.J., Rawson, P.F. (eds.), The Geology of England and Wales. Geological Society of London, London.

R.B. Huey and P:D. Ward (2005): Climbing a triassic Mount Everest: Into thinner air. In PDF, JAMA-Journal of the American Medial Association, 294: 1761-1762.

M.M. Joachimski et al. (2012): Climate warming in the latest Permian and the Permian–Triassic mass extinction. Abstract, Geology, 40: 195-198.

D.V. Kent and G. Muttoni (2003): Mobility of Pangea: Implications for Late Paleozoic and Early Mesozoic Paleoclimate. In PDF.

D.V. Kent and P.E. Olsen (2000): Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy basin (Canada): implications for early Mesozoic tropical climate gradients. In PDF, Earth and Planetary Science Letters, 179: 311-324.
Provided by the Internet Archive´s Wayback Machine.

Tim Kerr, Simon Morten, Matt Robinson Sally Stephens, University of Bristol: The Late Triassic Website. This site is intended to provide a brief background to Mass Extinction theory, the Triassic, and specifically to the Triassic Mass Extinction. Go to:
! Ecology of the Triassic.

! Heinz W. Kozur and G.H. Bachmann (2010): The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 107-119.

V.A. Krassilov and E.V. Karasev (2009): Paleofloristic evidence of climate change near and beyond the Permian-Triassic boundary. PDF file, Palaeogeogr. Palaeoclimatol. Palaeoecol., 284: 326-336.

W.M. Kuerschner et al.: Abrupt climate changes at the Triassic. Jurassic boundary inferred from palynological evidence. PDF file, Geophysical Research Abstracts, Vol. 8, 2006.

Evelyn Kustatscher et al. (2009): Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: A case study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Olang Dolomites, N-Italy). Abstract.

L. Li et al. (2014): Late Triassic palaeoclimate and palaeoecosystem variations inferred by palynological record in the northeastern Sichuan Basin, China. In PDF.

Sofie Lindström et al. (2009): Ladinian palynofloras in the Norwegian-Danish Basin: a regional marker reflecting a climate change. PDF file, Geological Survey of Denmark and Greenland Bulletin, 17: 21-24.

! A.W. Martinius et al. (2014): 2. Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, central North Sea. Summary. See also here (Google books).

Jennifer C. McElwain, UCD Earth Systems Institute, Dublin: Climate change and mass extinction: What can we learn from 200 million year old plants? PDF file.
Provided by the Internet Archive´s Wayback Machine.

! T. McKie (2014): Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, central North Sea. In PDF, Int. Assoc. Sedimentol. Spec. Publ., 46: 19-58.
See also here (provided by Google books).

T. McKie and B. Williams (2009): Triassic and fluvial dispersal across the northwest European Basins. Abstract.

! C.S. Miller et al. (2017): Astronomical age constraints and extinction mechanisms of the Late Triassic Carnian crisis. Sci Rep., 7: 2557.

S. Mueller et al. (2015): Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). In PDF, Journal of the Geological Society.

S. Mueller et al. (2015): Climate variability during the Carnian Pluvial Phase - A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology.

M. Mutti and H. Weissert(1995): Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy). PDF file, Journal of Sedimentary Research-Section B.

A.J. Newell (2017): Rifts, rivers and climate recovery: A new model for the Triassic of England. Abstract, Proceedings of the Geologists´ Association.

E. Nitsch (2015): 1. Der Lettenkeuper – Verbreitung, Alter, Paläogeographie . PDF file, in German.
E. Nitsch (2015): 3. Lithostratigraphie des Lettenkeupers. PDF file, in German.
E. Nitsch (2015): 13. Fazies und Ablagerungsräume des Lettenkeupers. PDF file, in German.
In: Hagdorn, H., Schoch, R. & Schweigert, G. (eds.): Der Lettenkeuper - Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity, Special Issue (Staatliches Museum für Naturkunde Stuttgart).
! Navigate from here for other downloads.

! J.G. Ogg (2015): The mysterious Mid-Carnian "Wet Intermezzo" global event. In PDF, Journal of Earth Science, 26: 181-191.

! J.G. Ogg et al. (2014): Triassic timescale status: A brief overview. PDF file, go to PDF page 3, Albertina 41.

C. Oh et al. (2015): Xenoxylon synecology and palaeoclimatic implications for the Mesozoic of Eurasia. In PDF, Acta Palaeontologica Polonica, 60: 245-256. See also here.

E.F. Pires et al. (2005): Late Triassic climate in southernmost Parana Basin (Brazil): evidence from dendrochronological data. Abstract, Journal of South American Earth Sciences, 18: 213-221.

J.T. Parrish and F. Peterson (1988): Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States: a comparison. PDF file, Sedimentary Geology, 56.

! S. Péron et al. (2005): Paleoenvironment reconstructions and climate simulations of the Early Triassic: Impact of the water and sediment supply on the preservation of fluvial systems. In PDF, Geodinamica Acta, 18: 431-446.

! M. Philippe et al. (2015): News from an old wood - Agathoxylon keuperianum (Unger) nov. comb. in the Keuper of Poland and France. Abstract, Review of Palaeobotany and Palynology, 221: 83–91. See also here (in PDF).
"Anatomical features suggest that Agathoxylon keuperianum thrived under warm and wet conditions, whereas German Keuper sediments globally suggest hot and dry climate".

! N. Preto et al. (2010): Triassic climates. State of the art and perspectives. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 1-10. See also here (abstract).

Allister Rees, Department of Geosciences, University of Arizona, Tucson: PaleoIntegration Project (PIP). The Paleointegration Project is facilitating interoperability between global-scale fossil and sedimentary rock databases, enabling a greater understanding of the life, geography and climate of our planet throughout the Phanerozoic. Go to: Mesozoic.

Lutz Reinhardt (2000): Dynamic stratigraphy and geochemistry of the Steinmergel-Keuper playa system: a record of Pangean megamonsoon cyclicity (Triassic, Middle Keuper, Southern Germany). Abstract, in PDF, Dissertation, University of Cologne, Germany.

G.J. Retallack (2013): Permian and Triassic greenhouse crises. In PDF, Gondwana Research, 24: 90-103.

Gregory J. Retallack (2010): Greenhouse crises of the past 300 million years. Abstract, Geological Society of America Bulletin, 121: 1441-1455.

M. Roscher: Environmental reconstruction of the Late Palaeozoic. Numeric modelling and geological evidences. In PDF. Dissertation, Technische Universität Bergakademie Freiberg.

! A. Ruffell et al. (2016): The Carnian Humid Episode of the late Triassic: a review. Abstract, Geological Magazine, 153: 271-284. See also here (in PDF).

M. Ruhl (2010): Carbon cycle changes during the Triassic-Jurassic transition. In PDF.

M.F. Schaller et al. (2015): A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering. In PDF, Geological Society of America Bulletin, 127.

E. Schneebeli-Hermann (2012): Extinguishing a Permian World. In PDF, Geology, 40: 287-288.

! Christopher R. Scotese, PALEOMAP Project, Arlington, Texas: Climate History. Go to: Late Triassic Climate.
Middle Triassic Climate.
Early Triassic Climate.

! B.W. Sellwood and P.J. Valdes (2007): Mesozoic climates. In: Mark Williams et al. (eds.): Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. Google books.

! B.W. Sellwood and P.J. Valdes (2006): Mesozoic climates: General circulation models and the rock record. In PDF, Sedimentary geology, 190: 269-287.
A version archived by the Internet Archive´s Wayback Machine.

J. Sha et al. (2015): Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China). In PDF, PNAS.

! C.J. Smiley (1967): Paleoclimatic Interpretations of Some Mesozoic Floral Sequences. AAPG Bulletin.

Department of Paleobiology, National Museum of Natural History, Smithsonian Institution: Triassic, Climate and Plate Tectonics.

L.A. Spalletti et al. (2003): Geological factors and evolution of southwestern Gondwana Triassic plants. In PDF, Gondwana Research. See also here (abstract).

! Hans-Dieter Sues and Nicholas C. Fraser (2010): Triassic Life on Land: The Great Transition. Google books.

Y.D. Sun et al. (2016): Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Abstract, Earth and Planetary Science Letters, 444: 88–100. See also here (in PDF).

! E.L. Taylor et al. (2000): Permian and Triassic high latitude paleoclimates: evidence from fossil biotas. In: Brian T. Huber, Kenneth G. MacLeod (eds.): Warm climates in earth history. Google books.

N. Tian et al. (2016): New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 65–75. See also here (in PDF).

M.E. Tucker and M.J. Benton (1982): Triassic environments, climates and reptile evolution. PDF file.

V. Vajda et al. (2016): Mesozoic ecosystems – climate and biotas. In PDF, Preface, Palaeogeography, Palaeoclimatology, Palaeoecology, 464.

T. Vollmer (2005): Paleoclimatology of Upper Triassic Playa Cycles: New Insights Into an Orbital Controlled Monsoon System (Norian, German Basin) PDF file (10.3 MB), Thesis, Universität zu Köln. See also here.

! Z. Wang (1993): Evolutionary ecosystem of Permian-Triassic redbeds in North China: a historical record of global desertification. In PDF; The Nonmarine Triassic.

! J.K. Warren (2010) Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. In PDF, Earth-Science Reviews, 98: 217–268. Worth checking out, excellent!

J.H. Whiteside et al. (2015): Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. In PDF, PNAS.

! J.H. Whiteside et al. (2011): Climatically driven biogeographic provinces of Late Triassic tropical Pangea. In PDF, PNAS, 108: 8972-8977. See also here and there.

Wikipedia the free encyclopedia: Triassic. See also: Trias (in German).

H. Wu et al. (2012): Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. In PDF, Gondwana Research, 22: 748-759.

A.M. Ziegler et al. (2003): Tracing the tropics across land and sea: Permian to present. In PDF; Lethaia.

! A.M. Ziegler et al. (1993): Early Mesozoic Phytogeography and Climate. Abstract.











Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated June 09, 2017
















eXTReMe Tracker