Links for Palaeobotanists

Home / All about Upper Triassic / Triassic Palaeogeography

Insight into the Triassic World
Homepages of Triassic Workers
Triassic Literature
Triassic Palaeobotany
Triassic Palynology
Triassic Climate
The Carnian Pluvial Event
Triassic Stratigraphy
The European Keuper: Stratigraphy and Facies
Triassic Palaeosols
Triassic Charcoal
Early Triassic Floras
Reconstructions of Triassic Landscapes
Triassic Field Trips

! Palaeobotanical Maps@
! Palaeogeography@
Glossaries, Dictionaries and Encyclopedias: Palaeontology@
Glossaries, Dictionaries and Encyclopedias: Geology@

Triassic Palaeogeography

Rainer Albert, Stuttgart, Germany: Die Trias in Südwestdeutschland Easy to understand introduction about the germanotype Triassic (in German).

R. Aubrecht et al. (2017): Provenance of the Lunz Formation (Carnian) in the Western Carpathians, Slovakia: Heavy mineral study and in situ LA–ICP–MS U–Pb detrital zircon dating. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 471: 233–253. See also here (abstract), and there.
Please take notice: Fig. 23, paleogeographic scheme of Middle Carnian, showing probable provenance of the Lunz Formation arenites and its relation to the Stuttgart Formation in the Central European Basin.

Loren E. Babcock (website hosted by Barbara Carrapa, Department of Geosciences, The University of Arizona, Tucson, AZ): Visualizing Earth History, Triassic Period (including Jurassic and Cretaceous). Brief lecture note, Powerpoint presentation.

! G. Bachmann et al. (2010): Triassic. (Triassic stratigraphy, Facies and hydrocarbons of the southern Permian Basin Area (SPBA)). In: Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, p. 149. ISBN 9789073781610.
See also here (PDF file, with table of contents) and there (PDF file, GIS maps presented in the atlas).

J. Barnasch (2009): Der Keuper im Westteil des Zentraleuropäischen Beckens (Deutschland, Niederlande, England, Dänemark): diskontinuierliche Sedimentation, Litho-, Zyklo- und Sequenzstratigraphie. PDF file, in German. Thesis, University Halle, Germany. See also here.

P.D.W. Barnard (1973): Mesozoic floras. In PDF, Special Papers in Palaeontology, 12: 175-187.

G. Barth et al. (2018): Marine and terrestrial sedimentation across the T–J transition in the North German Basin. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 74-94. See also here.
Note Fig. 1: Central European Basin (CEB) and working area.

! M.J. Benton (2018): Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. In PDF, Phil. Trans. R. Soc. A, 376. See also here.
Note Fig. 3: Palaeogeographic map of the Permo-Triassic, showing the single supercontinent Pangaea, modelled climate belts, and the distribution of terrestrial tetrapods.

! M.J. Benton (2016): The Triassic. Open access, Current Biology, 26: R1214–R1218.

H.-P. Berners et al. (1984): Vom Westrand des Germanischen Trias-Beckens zum Ostrand des Pariser Lias-Beckens: Aspekte der Sedimentationsgeschichte. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 66: 357-395. See also here (in PDF).

Ron Blakey, Department of Geology, Northern Arizona University, Flagstaff: Paleogeography Through Geologic Time. Choose a geologic period and click on its name to view menu of that time, then select the paleogeographic globe or a 1st order global tectonic feature. See especially:
! Triassic.

S. Bourquin et al. (2011): The Permian-Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: palaeogeographic maps and geodynamic implications. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 265-280.

S. Bourquin et al. (2007): The Permian-Triassic boundary and Early Triassic sedimentation in Western European basins: an overview. PDF file, Journal of Iberian Geology, 33: 221-236. See also here.

! W. Cao et al. (2017): Improving global paleogeography since the late Paleozoic using paleobiology. In PDF, Biogeosciences, 14: 5425–5439. See also here, and especially
! there. (EarthByte, an internationally leading eGeoscience collaboration between several Australian Universities, international centres of excellence and industry partners.

Deutsche Stratigraphische Kommission:
! International Triassic Field Workshops. An informal forum for earth scientists who are interested in the Triassic system. Go to:
! Southern Germany. In PDF, by H. Hagdorn, T. Simon, E. Nitsch, T. Aigner.
! Central Germany. In PDF, by G. H. Bachmann, G. Beutler.

C.G. Diedrich (2010): The development of the Middle Triassic tectonical controlled Germanic Basin of Central Europe and the palaeoenvironmental related distribution of marine and terrestrial reptiles. PDF file, Geophysical Research Abstracts, 12; EGU General Assembly 2010.

! S. Feist-Burkhardt et al. (2008): 13 Triassic (starting on page 749). In: Tom McCann (ed.): The Geology of Central Europe: Mesozoic and Cenozoic: Vol. 2. The Geological Society, London.

J. Fischer et al. (2012): Palaeoenvironments of the late Triassic Rhaetian Sea: Implications from oxygen and strontium isotopes of hybodont shark teeth. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 353–355: 60–72. See also here. Note:
Fig. 1: Palaeogeographic and structural overviewmap of the late Triassic Central European Basin.
Fig. 7. Schematic palaeogeographic map of the Central European Basin illustrating successive freshening of the Rhaetian Sea from the gates to its eastern margins as the result of extensive deltaic fresh water input.

! A. Förster et al. (2010): Reservoir characterization of a CO2 storage aquifer: The Upper Triassic Stuttgart Formation in the Northeast German Basin. In PDF, Marine and Petroleum Geology, 27: 2156-2172.
Note Fig. 3: Facies map of the Stuttgart Formation in northeastern Germany.

! M. Franz et al. (2015): Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin. In PDF, Global and Planetary Change, 135: 1-27. See also here (abstract).

M. Franz et al. (2015): Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin. In PDF, Global and Planetary Change, 135: 1-27. See also here (abstract). Note:
Fig. 3: Reconstructions of the Upper Muschelkalk Sea.
Fig. 13: Ladinian North Pangaean palaeogeography, showing depositional environments and inferred zonal climates.

M. Franz et al. (2014): Eustatic control on epicontinental basins: The example of the Stuttgart Formation in the Central European Basin (Middle Keuper, Late Triassic. Abstract, Global and Planetary Change, 122 :305-329. See also here (in PDF).
Please take notice: Fig. 1, Upper Triassic palaeogeography of the Central European Basin according to Ziegler (1990).

M. Franz et al. (2012): The strong diachronous Muschelkalk/Keuper facies shift in the Central European Basin: implications from the type-section of the Erfurt Formation (Lower Keuper, Triassic) and basin-wide correlations. Abstract, International Journal of Earth Sciences.

! Matthias Franz (2008), Martin-Luther-Universität Halle-Wittenberg: Litho- und Leitflächenstratigraphie, Chronostratigraphie, Zyklo- und Sequenzstratigraphie des Keupers im östlichen Zentraleuropäischen Becken (Deutschland, Polen) und Dänischen Becken (Dänemark, Schweden). Thesis, in German. Available in PDF, 39,5 MB.
Note page 47, fig. 5.1.1-2: Sandstone S 1.
page 51, fig. 5.1.1-3: Grenzdolomit.
page 53, fig. 5.1.2: Grabfeld-Formation.
page 59, fig. 5.1.3: Stuttgart-Formation.
page 64, fig. 5.1.4-1: Weser-Formation.
page 67, fig. 5.1.4-2: Hauptsteinmergel.
page 71, fig. 5.1.4-3: Heldburgips.
page 76, fig. 5.1.5-1: Arnstadt-Formation.
page 79, fig. 5.1.5-2: Lower Arnstadt-Formation.
page 91, fig. 5.2.3: Exter-, Seeberg- und Bartenstein-Formation.

M. Geluk et al. (2018): An introduction to the Triassic: current insights into the regional setting and energy resource potential of NW Europe. Abstract, Geological Society, London, Special Publications, 469.

C. Gisler et al. (2007): Sedimentological and palynological constraints on the basal Triassic sequence in Central Switzerland. Abstract, Swiss Journal of Geosciences, 100: 263–272. See also here (in PDF).
Please note Fig. 5. Palaeogeographic situation showing the location of the Vindelician High during Early Triassic and earliest Anisian.

! J. Golonka (2007): Late Triassic and Early Jurassic palaeogeography of the world. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 297-307. See also here.

Jan Golonka (2007): Phanerozoic paleoenvironment and paleolithofacies maps. Mesozoic. PDF file, Geologia, 33: 211-264.

B.L.H. Horn et al.(2018): A loess deposit in the Late Triassic of southern Gondwana, and its significance to global paleoclimate. Abstract, Journal of South American Earth Sciences, 81: 189-203. See also here.
Note fig. 10: Paleomap of Late Triassic showing the climatic zones.

M.W. Hounslow and A. Ruffell (2006): Triassic - seasonal rivers, dusty deserts and salty lakes. PDF file: In: Brenchley, P.J., Rawson, P.F. (eds.), The Geology of England and Wales. Geological Society of London, London.
This expired link is now available through the Internet Archive´s Wayback Machine.

K. Jewula et al. (2019): The late Triassic development of playa, gilgai floodplain, and fluvial environments from Upper Silesia, southern Poland. In PDF, Sedimentary Geology, 379: 25–45. See also here.
Note fig. 1A: Palaeogeographic map of the Germanic Basin in the Late Triassic.
Note fig. 9A: Schematic illustration of the gilgai palaeoenvironment at Krasiejów.

F. Käsbohrer et al. (2021): Exkursionsführer zur Geologie des Unteren Buntsandsteins (Untertrias) zwischen Harz und Thüringer Wald. PDF file, in German. Hercynia, 54: 1-64.
! Note fig. 2: Extent of the Central European Basin (CEB) and faciesmap of the Lower Buntsandstein including the Harz Mountains (modified after Geluk 2005and Augutsson et al. 2018).
! Note fig. 7: Views of the giant stromatolite in the former quarry near Benzingerode.

T.G. Klausen et al. (2019): The largest delta plain in Earth’s history. Free access, Geology, 47: 470-474.

! M. Kosnik and Allister Rees et al., University of Chicago: Paleogeographic Atlas Project Databases (PGAP). The older database version is available through the Internet Archive´s Wayback Machine.

H.W. Kozur and G.H. Bachmann (2010): The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 107-119. See also here (in PDF).
Please take notice: The palaeogeographic map for the late Julian, modified from Stampfli and Borel (2004) and Stampfli and Kozur (2006) in Fig. 5.

L. Krakow and F. Schunke (2016): Current clay potential in Germany Part 4: Raw materials from the Buntsandstein group/Trias system. In PDF, Brick and Tile Industry International, 69. See also here.
! Note fig. 1: Palaeogeographic position of the Central European Basin at the time of the Buntsandstein.
fig. 2: Grouping and facies areas of the Central European Basin at the time of the Buntsandstein.
! Note fig. 10: Formation of salt clays in sporadic playa lakes in the arid to semi-arid climate regions.

E. Kustatscher et al. (2014): Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Abstract, Palaeobio. Palaeoenv., 94: 237–270. See also here (in PDF).
Note fig. 2: Early Triassic palaeogeography of the Central European Basin.

S. Lindström et al. (2017): A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A time-line for the end-Triassic mass extinction Palaeogeography Palaeoclimatology Palaeoecology, 478: 80-102. See also here.

Alan Logan, Encyclopædia Britannica, Inc.: Triassic Period.
Please note the map "Pangea: Early Triassic Period". With indicated cold and warm water currents.

! T. McKie (2014): Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, central North Sea. In PDF, Int. Assoc. Sedimentol. Spec. Publ., 46: 19-58. See also here (provided by Google books).
Gross palaeogeographic setting of the central North Sea (after McKie & Shannon, 2011) in relation to the Southern Permian Basin and the margin of the Tethys Sea depicted in Fig. 1D.
! Palaeogeographic response to regional climate wettening depicted in Fig. 19.

Tom McKie and Brian Williams (2009): Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Abstract, Geological Journal, 44: 711-741.
! See also here (in PDF) or there.

Stephen McLoughlin (2001): The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. In PDF, Australian Journal of Botany, 49: 271-300. Please take notice: Fig. 2: Late Palaeozoic to early Mesozoic continental reconstructions (after Scotese 1997).
See also here (abstract).

J. Michalík (2011): Mesozoic paleogeography and facies distribution in the Northern Mediterranean Tethys from Western Carpathians view. In PDF, Iranian Journal of Earth Sciences, 3: 1-9.

! C.S. Miller and V. Baranyi (2019): Triassic Climates. In PDF. See also here.

A.J. Newell (2017): Rifts, rivers and climate recovery: A new model for the Triassic of England. Abstract, Proceedings of the Geologists´ Association.

E. Nitsch (2015): 1. Der Lettenkeuper – Verbreitung, Alter, Paläogeographie . PDF file, in German. Please take notice:
! Palaeogeography of Germany in the Lower Keuper (Ladinian) depicted in fig. 1.3.
E. Nitsch (2015): 3. Lithostratigraphie des Lettenkeupers. PDF file, in German.
E. Nitsch (2015): 13. Fazies und Ablagerungsräume des Lettenkeupers. PDF file, in German.
In: Hagdorn, H., Schoch, R. & Schweigert, G. (eds.): Der Lettenkeuper - Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity, Special Issue (Staatliches Museum für Naturkunde Stuttgart).
! Navigate from here for other downloads (back issues of Palaeodiversity 2015, scroll down to "Special Issue: Der Lettenkeuper ...").

! Edgar Nitsch, Landesamt für Geologie, Rohstoffe und Bergbau, Stuttgart (page hosted by the "Oberrheinische Geologische Verein"): Paläogeographie und Stratigraphie des Keupers in Deutschland. Keuper (Upper Triassic) palaeogeography and stratigraphy in Germany. PDF file, in German. Snapshot taken by the Internet Archive´s Wayback Machine.

B. Norden and P. Frykman (2013): Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany. Free access, International Journal of Greenhouse Gas Control, 19: 756–774.
Note fig. 9: Map showing the interpretation of the connectivity in the Stuttgart sand stringers based on scattered outcrop information and transport directions.

! H. Nowak et al. (2020): Palaeophytogeographical Patterns Across the Permian–Triassic Boundary. Open access, Front. Earth Sci.

! J.G. Ogg et al. (2020): The triassic period. In PDF, Geologic Time Scale 2020, Volume 2: 903-953. See also here.
! Note the generalized synthesis of selected Triassic stratigraphic scales in Figs. 25.5-25.7!

! J. Paul et al. (2009): Keuper (Late Triassic) sediments in Germany: indicators of rapid uplift of Caledonian rocks in southern Norway. PDF file, Norwegian Journal of Geology, 89: 193-202.

J. Paul et al. (2008): Provenance of siliciclastic sediments (Permian to Jurassic) in the Central European Basin. In PDF, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159: 641–650. See also here (abstract).
Note fig. 4: Keuper palaeogeography (Upper Triassic, Ladinian–Rhaetian) in Central Europe and basement provinces of neighbouring areas.

! S. Péron et al. (2005): Paleoenvironment reconstructions and climate simulations of the Early Triassic: Impact of the water and sediment supply on the preservation of fluvial systems. In PDF, Geodinamica Acta, 18: 431-446.

Allister Rees, Department of Geosciences, University of Arizona, Tucson: PaleoIntegration Project (PIP). The Paleointegration Project is facilitating interoperability between global-scale fossil and sedimentary rock databases, enabling a greater understanding of the life, geography and climate of our planet throughout the Phanerozoic. Go to: Mesozoic.
These expired links are now available through the Internet Archive´s Wayback Machine.

P.M. Rees et al. (2002): Permian Phytogeographic Patterns and Climate Data/Model Comparisons. PDF file, The Journal of Geology, 110: 1–31.

A. Ruffell and M. Hounslow 2006): Triassic: seasonal rivers, dusty deserts and saline lakes. In PDF, In P.F. Rawson, & P. Brenchley (eds.), The Geology of England & Wales. (pp. 295-325). Geological Society of London.

C.R. Scotese and N. Wright (2018):
! PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project. A digital representation of paleotopography and paleobathymetry. The paleoDEMS describe the changing distribution of deep oceans, shallow seas, lowlands, and mountainous regions during the last 540 million years at five million year intervals. See also here (in PDF). See especially:
! Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection). In PDF, Maps 43-52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL.
! PaleoDEM Resource – Scotese and Wright. A complete set of the PALEOMAP PaleoDEMs can be downloaded.

! H. Stollhofen et al. (2008): Upper rotliegend to early cretaceous basin development. Abstract, In: Littke, R., Bayer, U., Gajewski, D., Nelskamp, S. (eds.), Dynamics of Complex Intracontinental Basins. The Central European Basin System. Springer, Berlin, pp. 181-210. See also here (in PDF). Worth checking out:
Figure 4.3.6., subcrop map of the base Solling (Hardegsen) unconformity.
Figure 4.3.8, Anisian-Ladinian Muschelkalk palaeogeography.
Figure 4.3.11. Subcrop map of the base Stuttgart unconformity.
Figure 4.3.12. Subcrop map of the base Arnstadt (Early Cimmerian) unconformity.

The Stuttgart State Museum of Natural History, Germany:
Mittlerer und Oberer Keuper.
Mittlerer Keuper vor 233 – 205 Millionen Jahren.
Unterer Keuper.
Unterer Keuper vor 235 – 233 Millionen Jahren.
Easy to understand informations, in German.

J. Szulc et al. (2015): Key aspects of the stratigraphy of the Upper Silesian middle Keuper, southern Poland. In PDF, Annales Societatis Geologorum Poloniae, 85: 557–586.
Please note Fig. 4: The palaeogeographic location of Upper Silesia.
Fig. 5: Schematic representation of mid-Norian palaeogeography and sedimentary palaeoenvironments of the eastern part of Upper Silesia.

! T.H. Torsvik and L.R.M. Cocks (2004): Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. In PDF, Journal of the Geological Society, 161: 555-572. See also here.

L.P.P. van Hinsbergen et al. (2019): Triassic (Anisian and Rhaetian) palaeomagnetic poles from the Germanic Basin (Winterswijk, the Netherlands). Open access, Journal of Palaeogeography.
Note fig. 9: Palaeogeographic maps of Pangea in the Anisian and the Rhaetian times.

M. Warnecke et al. (2019): Asymmetry of an epicontinental basin—facies, cycles, tectonics and hydrodynamics: The Triassic Upper Muschelkalk, South Germanic Basin. In PDF, The Depositional Record.

! Wikipedia the free encyclopedia:
Trias (in German).
Germanic Trias.
Keuper (in German).

Q. Wu et al. (2021): High-precision U-Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China block. Free access, Geology. See also here.

! M.A. Zharkov and N.M. Chumakov (2001): Paleogeography and Sedimentation Settings during Permian–Triassic Reorganizations in Biosphere. In PDF, Stratigraphy and Geological Correlation, 9: 340–363 (translated from Stratigrafiya. Geologicheskaya Korrelyatsiya, Vol. 9).

Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
Last updated August 26, 2021