Home /
Palaeobotanical Tools /
X-ray
N.F. Adams et al. (2016):
X-rays
and virtual taphonomy resolve the first Cissus
(Vitaceae) macrofossils from Africa as early-diverging
members of the genus. Free access,
American Journal of Botany, 103: 1657–1677.
"... Virtual taphonomy explained how complex mineral infill processes concealed key seed
features, causing the previous taxonomic misidentification. ..."
!
S. Asche et al. (2023):
What
it takes to solve the Origin (s) of Life: An integrated review of techniques. Free access,
arXiv.
!
Note figure 1: Comprehensive array of experimental and computational techniques,
along with conceptual bridges, which are primarily utilised in OoL studies.
"... We review the common tools and techniques that have been used significantly in
OoL [origin(s) of life] studies in recent years.
[...] it spans broadly — from analytical chemistry to mathematical models — and highlights areas
of future work ..."
A. Balzano et al. (2022):
Scanning
electron microscopy protocol for studying anatomy of highly degraded waterlogged archaeological wood.
Open access, Forests, 13. https://doi.org/10.3390/f13020161.
"... The applied SEM protocol allowed characterisation of the anatomy of the highly
degraded WAW [waterlogged archaeological wood] while
reducing the time required for sample preparation and examination under the microscope ..."
Sylvain Bernard et al. (2007):
Exceptional
preservation of fossil plant spores in high-pressure.
metamorphic rocks. PDF file, Earth and Planetary Science Letters, 262: 257-272.
Now provided by the Internet Archive´s Wayback Machine.
B. Blonder et al. (2012): X-ray imaging of leaf venation networks. In PDF, New Phytologist.
! C.K. Boyce et al. (2010): X-ray photoelectron emission spectromicroscopic analysis of arborescent lycopsid cell wall composition and Carboniferous coal ball preservation. In PDF, International Journal of Coal Geology, 83: 146–153.
! M.E. Collinson et al. (2012): The value of X-ray approaches in the study of the Messel fruit and seed flora. In PDF, Palaeobiodiversity and Palaeoenvironments, 92: 403-416. See also here (abstract).
!
J.A. Cunningham et al. (2014):
A
virtual world of paleontology. In PDF,
Trends in Ecology & Evolution, 29: 347-357. See also
here.
"... in recent
years the discipline has been revolutionized by the emergence
of powerful methods for the digital visualization and
analysis of fossil material. This has included improvements
in both computer technology and its availability,
and in tomographic techniques, which have made it possible
to image a series of 2D sections or slices through a fossil
and to use these to make a 3D reconstruction of the
specimen".
F.E. de Sousa Filho et al. (2011):
Combination
of Raman, Infrared, and X-Ray
Energy-Dispersion Spectroscopies and X-Ray Diffraction
to Study a Fossilization Process. In PDF,
Braz. J. Phys., 41: 275-280.
Available via Internet Archive Wayback Machine.
See also
here.
! D. Dietrich et al. (2013): A microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz. In PDF, Paläontologische Zeitschrift.
D. Dietrich et al. (2000):
Analytical X-Ray Microscopy on Psaronius sp.:
A Contribution to Permineralization Process Studies.
In PDF, Mikrochim. Acta, 133: 279-283.
See also
here.
N.P. Edwards et al. (2014): Leaf metallome preserved over 50 million years. In PDF, Metallomics, 6. See also here.
A.M.T. Elewa (2011): Computational Paleontology. Provided by Google books.
Else Marie Friis et al. (2007): Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. PDF file, Nature, 450: 549-552. See also here (abstract).
R.A. Gastaldo et al. (1989): Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps. PDF file, Palaios. With X-radiography photographs!
A.E.S. Högström et al. (2009):
A pyritized lepidocoleid machaeridian (Annelida)
from the Lower Devonian Hunsrück Slate, Germany. PDF file,
Proc. R. Soc. B, 276: 1981-1986. This paper is exemplary in its combination of X-ray and
CT of animal body fossils.
This expired link is now available through the Internet Archive´s
Wayback Machine.
!
A.K. Martins et al. (2022):
Exceptional
preservation of Triassic-Jurassic fossil plants: integrating biosignatures and fossil diagenesis
to understand microbial-related iron dynamics. Free access,
Lethaia, 55: 1-16. See also
here.
Note figure 8: Inferred biogeochemical cycle for the chemical
stabilization of iron oxides into goethite in the studied material.
Figure 9: Inferred fossil diagenetic history for the studied fossil plants.
"... there
are branches and leaves coated by iron crusts, attributed to the precipitation of iron
oxide-oxyhydroxides. Underneath the crusts, the leaves retained minute anatomical
features of their epidermal cells and stomatal complexes ..."
S. McLoughlin and C. Mays (2022): Synchrotron X-ray imaging reveals the three-dimensional architecture of beetle borings (Dekosichnus meniscatus) in Middle–Late Jurassic araucarian conifer wood from Argentina. Open access, Review of Palaeobotany and Palynology, 297.
D.A. Oliva et al. (2022):
First
record of plant macrofossil from the Boa Vista Formation, Takutu Basin, Roraima State, Brazil. In PDF,
Revista Brasileira de Paleontologia, 25: 303–321.
See also
here.
"... X-ray diffractometry (XRD) and Laser
induced-breakdown spectroscopy (LIBS) analysis were performed ..."
K.B. Pigg et al. (2006): VALUE OF HRXCT FOR SYSTEMATIC STUDIES OF PYRITIZED FOSSIL FRUITS. Abstract, 2006 Philadelphia Annual Meeting, Geological Society of America.
F. Riquelme et al. (2009): Palaeometry: Non-destructive analysis of fossil materials. In PDF.
J.P.S. Saldanha et al. (2023): Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil. In PDF, Biogeosciences, https://doi.org/10.5194/bg-2023-56. See also here.
! A.C. Scott and M.E. Collinson (2003): Non-destructive multiple approaches to interpret the preservation of plant fossils: implications for calcium-rich permineralisations. PDF file, Journal of the Geological Society, 160: 857-862. See also here.
M. Speranza et al. (2010):
Traditional
and new microscopy techniques applied to the study of microscopic fungi included in amber.
PDF file, In: A. Méndez-Vilas and J. Díaz (eds.):
Microscopy: Science, Technology, Applications and Education.
Scanning electron microscopy in
backscattered electron mode, with energy dispersive X-ray spectroscopy microanalysis.
Now recovered from the Internet Archive´s
Wayback Machine.
!
R.A. Spicer (1977):
The
pre-depositional formation of some leaf impressions.
PDF file, Palaeontology, 20: 907–912.
This expired link is now available through the Internet Archive´s
Wayback Machine.
X-ray microanalysis of the surface of the encrustation.
B.L. Teece et al. (2020): Mars Rover Techniques and Lower/Middle Cambrian Microbialites from South Australia: Con.struction, Biofacies, and Biogeochemistry. In PDF, Astrobiology, 20: See also here.
E. Trembath-Reichert et al. (2015): Four hundred million years of silica biomineralization in land plants. PNAS, 112: 5449–5454.
Geophysical Laboratory,
Washington, DC:
micro-XANES.
Synchrotron Based Scanning Transmission X-ray Microscopy and Microspectroscopy
(C-, N-, O-XANES).
Snapshot provided by the Internet Archive´s Wayback Machine.
! Sirelious White (2006): Digital Dissection of Radiographs, Using the Early Cretaceous Bird Confuciusornis and Photoshop CS2TM. PDF file, Diss., University of New Orleans.
Scott L. Wing (1992):
High-Resolution
Leaf X-Radiography in Systematics and Paleobotany.
American Journal of Botany, Vol. 79: 1320-1324.
Top of page Links for Palaeobotanists |
Search in all "Links for Palaeobotanists" Pages!
|