Links for Palaeobotanists

Home / Palaeobotanical Tools / X-ray


Categories
Preparation and Conservation
Managing Fossil Collections
Transfer Technique
Palynological Preparation Techniques
Cellulose Peel Technique
Latex Casts
Photography and Scanning
Imaging Fossils Using UV-Light (Black-Light Photography)
Microscopy
Fluorescence Microscopy and Fluorescence Microspectroscopy
Scanning- (SEM) and Environmental Scanning Electron Microscopy (ESEM)
Digital Cameras on the Microscope
Focus Stacking (Photography, Extended Depth of Field)
Superresolution (SR)
Transmission Electron Microscopy (TEM)
Microtomography (CT Scanning, XTM) including Synchrotron X-ray Tomographic Microscopy (SRXTM)
Raman and Infrared Spectroscopy
High Dynamic Range Imaging (HDR)
Image Processing
Writing, Translating and Drawing
Geostatistics

! Chemotaxonomy and Chemometric Palaeobotany@
Glossaries, Dictionaries and Encyclopedias: Microscopy@


X-ray


N.F. Adams et al. (2016): X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early-diverging members of the genus. Free access, American Journal of Botany, 103: 1657–1677.
"... Virtual taphonomy explained how complex mineral infill processes concealed key seed features, causing the previous taxonomic misidentification. ..."

! S. Asche et al. (2023): What it takes to solve the Origin (s) of Life: An integrated review of techniques. Free access, arXiv.
! Note figure 1: Comprehensive array of experimental and computational techniques, along with conceptual bridges, which are primarily utilised in OoL studies.
"... We review the common tools and techniques that have been used significantly in OoL [origin(s) of life] studies in recent years.
[...] it spans broadly — from analytical chemistry to mathematical models — and highlights areas of future work ..."

A. Balzano et al. (2022): Scanning electron microscopy protocol for studying anatomy of highly degraded waterlogged archaeological wood. Open access, Forests, 13. https://doi.org/10.3390/f13020161.
"... The applied SEM protocol allowed characterisation of the anatomy of the highly degraded WAW [waterlogged archaeological wood] while reducing the time required for sample preparation and examination under the microscope ..."

Sylvain Bernard et al. (2007): Exceptional preservation of fossil plant spores in high-pressure. metamorphic rocks. PDF file, Earth and Planetary Science Letters, 262: 257-272.
Now provided by the Internet Archive´s Wayback Machine.

B. Blonder et al. (2012): X-ray imaging of leaf venation networks. In PDF, New Phytologist.

! C.K. Boyce et al. (2010): X-ray photoelectron emission spectromicroscopic analysis of arborescent lycopsid cell wall composition and Carboniferous coal ball preservation. In PDF, International Journal of Coal Geology, 83: 146–153.

J. Brunet et al. (2023): Preparation of large biological samples for high-resolution, hierarchical, synchrotron phase-contrast tomography with multimodal imaging compatibility Free access, Nature protocols, 18: 1441–1461.
"... we describe the preparation, stabilization, dehydration and mounting of large soft-tissue samples for X-ray microtomography ,,,"

! M.E. Collinson et al. (2012): The value of X-ray approaches in the study of the Messel fruit and seed flora. In PDF, Palaeobiodiversity and Palaeoenvironments, 92: 403-416. See also here (abstract).

! J.A. Cunningham et al. (2014): A virtual world of paleontology. In PDF, Trends in Ecology & Evolution, 29: 347-357. See also here.
"... in recent years the discipline has been revolutionized by the emergence of powerful methods for the digital visualization and analysis of fossil material. This has included improvements in both computer technology and its availability, and in tomographic techniques, which have made it possible to image a series of 2D sections or slices through a fossil and to use these to make a 3D reconstruction of the specimen".

F.E. de Sousa Filho et al. (2011): Combination of Raman, Infrared, and X-Ray Energy-Dispersion Spectroscopies and X-Ray Diffraction to Study a Fossilization Process. In PDF, Braz. J. Phys., 41: 275-280.
Available via Internet Archive Wayback Machine.
See also here.

! N.K. Dhami et al. (2023): Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Free access, Frontiers in Microbiology, 14: 1225411. doi: 10.3389/fmicb.2023.1225411.
Note figure 1: The three broad modes of fossilization.
Figure 6: Visual representation of the factors involved in formation of iron carbonate concretions in freshwater influenced environments.
! Figure 7: Flow diagram for analytical methods applicable to microbial fossil concretions, modern and ancient.
Figure 8: Completing the story of fossilization. Conceptual framework to establish fossilization processes and interrogate their biochemical record.
"... we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM [organic matter] ..."

! D. Dietrich et al. (2013): A microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz. In PDF, Paläontologische Zeitschrift.

D. Dietrich et al. (2000): Analytical X-Ray Microscopy on Psaronius sp.: A Contribution to Permineralization Process Studies. In PDF, Mikrochim. Acta, 133: 279-283.
See also here.

N.P. Edwards et al. (2014): Leaf metallome preserved over 50 million years. In PDF, Metallomics, 6. See also here.

A.M.T. Elewa (2011): Computational Paleontology. Provided by Google books.

Else Marie Friis et al. (2007): Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. PDF file, Nature, 450: 549-552. See also here (abstract).

R.A. Gastaldo et al. (1989): Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps. PDF file, Palaios, 4: 356-365.
See also here.
With X-radiography photographs!

F. Herrera et al. (2023): Investigating Mazon Creek fossil plants using computed tomography and microphotography. Free access, Frontiers of Earth Science, 11: 1200976. doi: 10.3389/feart.2023.1200976.
"... The three-dimensional (3D) preservation of Mazon Creek fossil plants makes them ideal candidates for study using x-ray micro-computed tomography (ìCT)
[...] The mineralogical composition of the fossil plant preservation was studied using elemental maps and Raman spectroscopy. In-situ spores were studied with differential interference contrast, Airyscan confocal super-resolution microscopy, and scanning electron microscopy, which reveal different features of the spores with different degrees of clarity ..."

A.E.S. Högström et al. (2009): A pyritized lepidocoleid machaeridian (Annelida) from the Lower Devonian Hunsrück Slate, Germany. PDF file, Proc. R. Soc. B, 276: 1981-1986. This paper is exemplary in its combination of X-ray and CT of animal body fossils.
This expired link is now available through the Internet Archive´s Wayback Machine.

! A.K. Martins et al. (2022): Exceptional preservation of Triassic-Jurassic fossil plants: integrating biosignatures and fossil diagenesis to understand microbial-related iron dynamics. Free access, Lethaia, 55: 1-16. See also here.
Note figure 8: Inferred biogeochemical cycle for the chemical stabilization of iron oxides into goethite in the studied material.
Figure 9: Inferred fossil diagenetic history for the studied fossil plants.
"... there are branches and leaves coated by iron crusts, attributed to the precipitation of iron oxide-oxyhydroxides. Underneath the crusts, the leaves retained minute anatomical features of their epidermal cells and stomatal complexes ..."

S. McLoughlin and C. Mays (2022): Synchrotron X-ray imaging reveals the three-dimensional architecture of beetle borings (Dekosichnus meniscatus) in Middle–Late Jurassic araucarian conifer wood from Argentina. Open access, Review of Palaeobotany and Palynology, 297.

D.A. Oliva et al. (2022): First record of plant macrofossil from the Boa Vista Formation, Takutu Basin, Roraima State, Brazil. In PDF, Revista Brasileira de Paleontologia, 25: 303–321.
See also here.
"... X-ray diffractometry (XRD) and Laser induced-breakdown spectroscopy (LIBS) analysis were performed ..."

K.B. Pigg et al. (2006): VALUE OF HRXCT FOR SYSTEMATIC STUDIES OF PYRITIZED FOSSIL FRUITS. Abstract, 2006 Philadelphia Annual Meeting, Geological Society of America.

! R. Racicot (2016): Fossil secrets revealed: X-ray CT scanning and applications in paleontology. In PDF, The Paleontological Society Papers, 22: 21–38.
See likewise here.

F. Riquelme et al. (2009): Palaeometry: Non-destructive analysis of fossil materials. In PDF.

J.P.S. Saldanha et al. (2023): Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil. In PDF, Biogeosciences, https://doi.org/10.5194/bg-2023-56. See also here.

S. Saminpanya et al. (2023): Mineralogy, geochemistry, and petrogenesis of the world's longest petrified wood. In PDF. International Journal of Geoheritage and Parks. See likewise here.

! A.C. Scott and M.E. Collinson (2003): Non-destructive multiple approaches to interpret the preservation of plant fossils: implications for calcium-rich permineralisations. PDF file, Journal of the Geological Society, 160: 857-862. See also here.

M. Speranza et al. (2010): Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. PDF file, In: A. Méndez-Vilas and J. Díaz (eds.): Microscopy: Science, Technology, Applications and Education. Scanning electron microscopy in backscattered electron mode, with energy dispersive X-ray spectroscopy microanalysis.
Now recovered from the Internet Archive´s Wayback Machine.

! R.A. Spicer (1977): The pre-depositional formation of some leaf impressions. PDF file, Palaeontology, 20: 907–912.
This expired link is now available through the Internet Archive´s Wayback Machine.
X-ray microanalysis of the surface of the encrustation.

B.L. Teece et al. (2020): Mars Rover Techniques and Lower/Middle Cambrian Microbialites from South Australia: Con.struction, Biofacies, and Biogeochemistry. In PDF, Astrobiology, 20: See also here.

E. Trembath-Reichert et al. (2015): Four hundred million years of silica biomineralization in land plants. PNAS, 112: 5449–5454.

Geophysical Laboratory, Washington, DC:
micro-XANES. Synchrotron Based Scanning Transmission X-ray Microscopy and Microspectroscopy (C-, N-, O-XANES).
Snapshot provided by the Internet Archive´s Wayback Machine.

! Sirelious White (2006): Digital Dissection of Radiographs, Using the Early Cretaceous Bird Confuciusornis and Photoshop CS2TM. PDF file, Diss., University of New Orleans.

Scott L. Wing (1992): High-Resolution Leaf X-Radiography in Systematics and Paleobotany. American Journal of Botany, Vol. 79: 1320-1324.

! P. Withers et al. (2021): X-ray computed tomography. In PDF, Nature Reviews Methods Primers. https://doi.org/10.1038/s43586-021-00015-4, https://doi.org/10.1038/s43586-021-00015-4. See also here.












Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated January 30, 2024


















eXTReMe Tracker