Insect Evolution, Links for Palaeobotanists
Links for Palaeobotanists



Home / Evolution & Extinction / Insect Evolution


Categories
Web Sites about Evolution
Focussed on the Fossil Record
Evolution Sciences versus Doctrines of Creationism and Intelligent Design
Web Sites about Mass Extinctions
The Mass Extinction at the End of the Permian
Biotic Recovery from the Permian-Triassic Mass Extinction
The Mass Extinction at the End of the Triassic
Living Fossils
! Fossil Animal Plant Interaction@
! Teaching Documents about Evolution@
! Phylogeography@
! Focused on the Evolution of Plants@
Teaching Documents about Palaeobotany@
Teaching Documents about Palaeontology and Palaeoecology@
Databases focused on Palaeobotany and Palaeontology@
Databases focused on Botany and Biology@
Glossaries, Dictionaries and Encyclopedias: Palaeontology@
Glossaries, Dictionaries and Encyclopedias: Biology@


Insect Evolution


G. Bechly (2013): Fossile Libellennachweise aus Deutschland. In German.

G. Bechly and R. Stockar (2011): The first Mesozoic record of the extinct apterygote insect genus Dasyleptus (Insecta: Archaeognatha: Monura: Dasyleptidae) from the Triassic of Monte San Giorgio (Switzerland). In PDF, Palaeodiversity 4: 23–37.

V. Blagoderov et al. (2007): How time flies for flies: diverse Diptera from the Triassic of Virginia and early radiation of the order. In PDF, American Museum Novitates.

! T.J. Bradley et al. (2015): Episodes in insect evolution. In PDF, Integrative and Comparative Biology, 49: 590-606.

! F.L. Condamine et al. (2016): Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Scientific Reports, 6.
See also here.

Bryan N. Danforth and J. Ascher, Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY: Flowers and Insect Evolution. Abstract, PDF file, SCIENCE, VOL 283; 1999. See also
here.

! The EDNA fossil insect database (named after Edna Clifford): EDNA aims to be a complete, fully interactive list of all the species of insect named from the fossil record, including site, geological age and reference for each holotype. Read the Help Searching for better search results.

! K.Y. Eskov: Geographical history of the insects. See also: History of Insects (Kluwer Academic Publishers).

Susan E. Fahrbach: What arthropod brains say about arthropod phylogeny.

B.D. Farrell and A.S. Sequeira (2004): Evolutionary rates in the adaptive radiation of beetles on plants. PDF file, Evolution 58: 1984-2001.
Still provided by the Internet Archive´s Wayback Machine.

! Fossil Record 2 (Department of Earth Sciences University of Bristol). This is a near-complete listing of the diversity of life through time, compiled at the level of the family. Go to:
! The fossil Record 2. Recoeding the history and diversity of live, 30 phyla, 122 classes, 701 orders and 5638 families. The data set lists basic data derived from The Fossil Record 2 (Benton, 1993), on the diversity, origination, and extinction of all life, continental life, and marine life from the Vendian to the present-day.

N.C. Fraser et al. (1996): A Triassic lagerstätte from eastern North America. PDF file, Nature.

O.F. Gallego et al. (2011): The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. In PDF, Ameghiniana, 48: 447-461. See also here (abstract).
Please take notice: Fig. 8, the reconstruction by Carsten Brauckmann and Elke Gröening. A plecopteran nymph over a Dicroidium leaf under the water surface.

R. Garwood and M. Sutton (2010): X-ray micro-tomography of Carboniferous stem-Dictyoptera: new insights into early insects. In PDF, Biology Letters.

! Michael W. Gaunt and Michael A. Miles (2002): An Insect Molecular Clock Dates the Origin of the Insects and Accords with Palaeontological and Biogeographic Landmarks. PDF file, Mol. Biol. Evol., 19: 748-761.

David Grimaldi, American Museum of Natural History, New York, and Michael S. Engel Natural History Museum of Los Angeles County (Cambridge University Press): Evolution of the Insects. Book announcement. See also
! here (Google books).

J.F. Harrison et al. (2010): Atmospheric oxygen level and the evolution of insect body size. In PDF, Proc. R. Soc., B, 277: 1937-1946.

Hooper Virtual Paleontological Museum (HVPM): The Development of Insect Flight.

International Palaeoentomological Society (IPS). The aims of the Society are to promote and advance the understanding of fossil insects and other non-marine arthropods.

! J.A. Karr and M.E. Clapham (2015): Taphonomic biases in the insect fossil record: shifts in articulation over geologic time. In PDF, Paleobiology.

Kendall Bioresearch Services, Bristol, UK: THE FOSSIL RECORD OF MAJOR INSECT GROUPS OVER THE MAIN GEOLOGICAL PERIODS OF EARTH HISTORY.

! P. Kenrick et al. (2012): A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. In PDF, Philosophical Transactions of the Royal Society B, 367: 519-536.
This expired link is available through the Internet Archive´s Wayback Machine.

Conrad C. Labandeira (2010): The Pollination of Mid Mesozoic Seed Plants and the Early History of Long-proboscid Insects. In PDF, Annals of the Missouri Botanical Garden, 97: 469-513.
See also here and there.

Conrad C. Labandeira et al. (2007): Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. PDF file, Taxon, 56:663-695.

C. Labandeira (2005): Recent and exciting developments in understanding fossil insects and their terrestrial relatives. In PDF, American Paleontologist.

! Conrad C. Labandeira, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC: Enhanced: How Old Is the Flower and the Fly? Including an extensive annotated link directory. Science 1998; 280: 57-59.

Conrad C. Labandeira and Gunter J. Eble, Smithsonian Institution, National Museum of Natural History, Department of Paleobiology, Washington, DC: THE FOSSIL RECORD OF INSECT DIVERSITY AND DISPARITY (PDF file).

! C.C. Labandeira (2001): Rise and diversification of insects. PDF file.

Conrad C. Labandeira: EARLY HISTORY OF ARTHROPOD AND VASCULAR PLANT ASSOCIATIONS.- Annu. Rev. Earth Planet. Sci. 1998 26: 329-377. Full Online Access via Annual Reviews, Go to Annual Reviews Search Page (Biomedical Sciences), Search for "Labandeira" (Field Author, Last Name).

! C.C. Labandeira and J.J. Sepkoski (1993): Insect diversity in the fossil record. PDF file, Science. See also here.

Min Li et al. (2012): Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes. In PDF.

C.M. Liutkus et al. (2010): Use of fine-scale stratigraphy and chemostratigraphy to evaluate conditions of deposition and preservation of a Triassic Lagerstätte, south-central Virginia. In PDF, J. Paleolimnol. 44: 645-666.

E.D. Lukashevich et al. (2010): The oldest occurrence of immature Diptera (Insecta), Middle Triassic, France. PDF file, Ann. soc. entomol. Fr. (n.s.), 46: 4-22.

! D.D. Mckenna et al. (2015): The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40: 835–880.

! B. Misof et al. (2014): Phylogenomics resolves the timing and pattern of insect evolution. In PDF, Science.

Sebastian Molnar, R. Redfield's Research Lab, Department of Zoology, University of British Columbia, Vancouver: Evolution. Go to: Plant Insect Resistance.

Laboratory of Arthropods, Palaeontological Institute, Russian Academy of Sciences, Moscow. Go to: ECOLOGICAL HISTORY OF THE TERRESTRIAL INSECTS (by V.V. Zherikhin).

K.S. Nam et al. (2017): An extraordinary palaeontinid from the Triassic of Korea and its significance. Sci. Rep., 7.

D.B. Nicholson et al. (2015): Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE, 10.

! D.B. Nicholson et al. (2014): Fossil evidence for key innovations in the evolution of insect diversity. In PDF, Proc. R. Soc., B 281. See also here.

G.L. Osés et al. (2016): Deciphering the preservation of fossil insects: a case study from the Crato Member, Early Cretaceous of Brazil. PeerJ., 4: e2756.

A.A. Prokin et al. (2013): New beetle larvae (Coleoptera: Coptoclavidae, Caraboidea, Polyphaga) from the Upper Triassic of Germany. In PDF.

J. Prokop et al. (2016): Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlighten functional morphology and sensorial perception. Sci. Rep. 6, 28316.
! "... The broader application to the study of scarce insect fossils was accelerated recently with use of ESEM, which makes it possible to study uncoated specimens using this non-invasive technique ...".

! Alexandr P. Rasnitsyn and Donald L.J. Quicke (eds.) 1980: History of Insects (Kluwer Academic Publishers). Some chapters are free!

! D. Ren et al. (2009). A Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies. In PDF, Science, 326: 840-847. See also here.

J. Rust (2007): Die Bedeutung von Fossilien für phylogenetische Rekonstruktionen. In PDF, go to PDF page 75. In: Species, Phylogeny and Evolution, Phylogenetisches Symposium Göttingen.
Snapshot provided by the Internet Archive´s Wayback Machine.

S.R. Schachat et al. (2014): Plant-Insect Interactions from Early Permian (Kungurian) Colwell Creek Pond, North-Central Texas: The Early Spread of Herbivory in Riparian Environments. International Journal of Plant Sciences, 175.

A.S. Sequeira and B.D. Farrell (2001): Evolutionary origins of Gondwanan interactions: How old are Araucaria beetle herbivores? PDF file, Biological Journal of the Linnean Society 74: 459-474.

! D.E. Shcherbakov (2008): Insect recovery after the Permian/Triassic crisis. PDF file, Alavesia, 2: 125-131. See also here.

D.E. Shcherbakov (2008): On Permian and Triassic Insect Faunas in Relation to Biogeography and the Permian–Triassic Crisis. Abstract, Paleontological Journal, 42: 15-31.

D.E. Shcherbakov, Paleontological Institute, Russian Academy of Sciences, Moscow, Russia: Permian Faunas of Homoptera (Hemiptera) in Relation to Phytogeography and the Permo-Triassic Crisis. Paleontological Journal, Vol. 34, Suppl. 3, 2000, pp. S251–S267.

! D.M. Smith and J.D. Marcot (2015): The fossil record and macroevolutionary history of the beetles. Proc. R. Soc., B, 282. See also here (in PDF).

Ted Snyder, Department of Entomology, and the NC State AgNIC Systematic Entomology Team, North Carolina State University, Raleigh, NC: NC State AgNic Entomology, A Guide to Online Insect Systematic Resources. Well organized insight to internet entomology resources, including insect plant interactions.

J. Szwedo and A. Nel (2011): The oldest aphid insect from the Middle Triassic of the Vosges, France. In PDF, Acta Palaeontologica Polonica, 56: 757-766.

! Tree of Life. The Tree of Life Web Project (ToL) is a collaborative effort of biologists from around the world. On more than 4000 World Wide Web pages, the project provides information about the diversity of organisms on Earth, their evolutionary history (phylogeny), and characteristics. Go to: Insecta.

! John VanDyk, Department of Entomology, Iowa State University: Iowa State Entomology Index of Internet Resources. The directory and search engine of insect-related resources on the Internet. The intent of this site is to maintain a collaborative database of useful sites and organize them in a usable manner. In this way, this site serves as a "jumping-off point" for all entomology sites.

! I.M. Vea and D.A. Grimaldi (2016): Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Sci Rep., 6.

The Virtual Fossil Museum (Paleo Ring): An educational resource dedicated to fossils. Insect evolution. See also: Insects.

M. Wang et al. (2013): Under Cover at Pre-Angiosperm Times: A Cloaked Phasmatodean Insect from the Early Cretaceous Jehol Biota. In PDF, See also here.

P. Ward et al. (2006): Confirmation of Romer´s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. In PDF, PNAS, see also here.

T. Wappler et al. (2015): Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy) - initial pattern and response to abiotic environmental perturbations. PeerJ.

! B.M. Wiegmann et al. (2009): Holometabolous insects (Holometabola). PDF file, In: S.B. Hedges and S. Kumar (eds.): The Timetree of Life (see here).

! Wikipedia, the free encyclopedia: Insect evolution, Insect, and Co-evolution. See also:
Wikipedia Germany: Insekten (in German).

Edward O. Wilson (Museum of Comparative Zoology, Harvard University, Cambridge, MA), and Bert Hölldobler (Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität, Würzburg, Germany): The rise of the ants: A phylogenetic and ecological explanation. PDF file, Proceedings of the National Academy of Sciences of the USA (PNAS), 102(21): 7411-7414; 2005.
Snapshot taken by the Internet Archive´s Wayback Machine.

Isaak S. Winkler and Charles Mitter (2008): The phylogenetic dimension of insect-plant interactions: a review of recent evidence. PDF file. See also here.

YAHOO Groups: Paleogeoarthropoda. Paleogeoarthropoda is referring to all non-marine arthropods (i.e., from brackish, freshwater, and terrestrial environments), including chelicerata (xiphosura, eurypterida and "arachnids"), euthycarcinoidea, myriapoda, hexapoda (insecta and others), and some crustaceans. To join, click "Join Group" and follow instructions to become a pending member.

D. Zheng et al. (2017): The first Late Triassic Chinese triadophlebiomorphan (Insecta: Odonatoptera): biogeographic implications. Scientific Reports.

! V.V. Zherikhin: Ecological history of the terrestrial insects. See also: History of Insects (Kluwer Academic Publishers).










Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, kp-kelber@t-online.deWürzburg,
e-mail
kp-kelber@t-online.de
Last updated July 19, 2017




















eXTReMe Tracker