Links for Palaeobotanists

Home / Preservation & Taphonomy / Pith Cast and "in situ" Preservation

Taphonomy in General
Plant Fossil Preservation and Plant Taphonomy
Collecting Bias: Our Incomplete Picture of the Past Vegetation
Three-Dimensionally Preserved Plant Compression Fossils
Permineralized Plants and the Process of Permineralization
Petrified Forests
Bacterial Biofilms (Microbial Mats)
Molecular Palaeobotany
Pyrite Preservation
Upland and Hinterland Floras
Abscission and Tissue Separation in Fossil and Extant Plants
Leaf Litter and Plant Debris
Log Jams and Driftwood Accumulations
Wood Decay

! Plant Roots@
! Fossil Charcoal@
! Coalification@

Pith Cast and "in situ" Preservation

P. Appleton et al. (2011): The Brymbo Fossil Forest. In PDF, Geology Today, 27: 107–113.

Nan Crystal Arens, C. Strömberg and A. Thompson: Sphenopsids and Ferns, The Sphenopsids.

Chester A. Arnold (1956): A new calamite from Colorado (PDF file). Diagrammatic Calamites reconstruction in fig. 1.

M. Banerjee (2005): Autochthonous deposition of Indian coal beds with palaeobotanical evidences of in-situ plants from Saharjuri Basin, Jharkhand. In PDF, Current Science, 88: 1487-1490.

A.R. Bashforth and W.A. DiMichele (2012): Permian Coal Forest offers a glimpse of late Paleozoic ecology. In PDF, PNAS, 109: 4717-4718.

A.R. Bashforth et al. (2010): Vegetation heterogeneity on a Late Pennsylvanian braided-river plain draining the Variscan Mountains, La Magdalena Coalfield, northwestern Spain. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology.

C.M. Berry and J.E.A. Marshall (2015): Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard. In PDF, Geology, 43: 1043-1046.

M. Brea et al. (2015): Reconstruction of a fossil forest reveals details of the palaeoecology, palaeoenvironments and climatic conditions in the late Oligocene of South America. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 418: 19-42.

Mariana Brea et al. (2009): Darwin forest at agua de la zorra: the first in situ forest discovered in South America by Darwin in 1835. PDF file, Revista de la Asociación Geológica Argentina, 64: 21-31. Permineralized fossil tree stumps in growth position.

Mariana Brea et al. (2008): Ecological reconstruction of a mixed Middle Triassic forest from Argentina. PDF file, Alcheringa, 32: 365-393. See also here.-The Darwin Forest consists of 120 stumps in life position!

Michael Clayton, Department of Botany, University of Wisconsin, Madison: Instructional Technology (BotIT). Some image collections. Excellent! Go to:
Equisetales. Fossil sphenophytes.

Cindy Creighton, Springhill, Nova Scotia: Nova Scotia Fossils. Calamites pith casts from Cumberland County, Nova Scotia.

N. Rubén Cúneo et al. (2003): In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology, 197: 239-261.


! W.A. DiMichele (2014): Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. Int. J. Plant Sci., 175: 123-164. See also here (in PDF).
Large Sigillaria stump cast on PDF page 11. Reconstructions of coal swamps and some dryland plant reconstructions with Cordaitalean trees and Walchian conifers.

W.A. DiMichele et al. (2013): Growth habit of the late Paleozoic rhizomorphic tree-lycopsid family Diaphorodendraceae: Phylogenetic, evolutionary, and paleoecological significance. In PDF, American Journal of Botany, 100: 1-22.

! W.A. DiMichele and H.J. Falcon-Lang (2012): Calamitalean "pith casts" reconsidered. In PDF, Review of Palaeobotany and Palynology. See also here (abstract).

! W.A. DiMichele and H.J. Falcon-Lang (2011): Pennsylvanian "fossil forests" in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. PDF file, Journal of the Geological Society, London, 168: 585-605. See fig. 14 (PDF page 17),

W.A. DiMichele et al. (2009): Catastrophically buried Middle Pennsylvanian Sigillaria and calamitean sphenopsids from Indiana, USA: What kind of vegetation was this? PDF file, Palaios, 24: 159-166.

W.A. DiMichele et al. (1996): A drowned lycopsid forest above the Mahoning coal (Conemaugh Group, Upper Pennsylvanian) in eastern Ohio, USA. PDF file, International Journal of Coal Geology, 31.

R.F. Dubiel (1987): Sedimentology of the Upper Triassic Chinle Formation Southeastern Utah: Paleoclimatic Implications. In PDF, Journal of the Arizona-Nevada Academy of Science.
See fig. 8: Horsetail pith casts, formed when the hollow trunks of the horsetails were broken off and filled with sediment during a flood event.

! H.J. Falcon-Lang (2015): A calamitalean forest preserved in growth position in the Pennsylvanian coal measures of South Wales: Implications for palaeoecology, ontogeny and taphonomy. In PDF, Review of Palaeobotany and Palynology. See also here (abstract).

H.J. Falcon-Lang et al. (2014): Coniferopsid tree trunks preserved in sabkha facies in the Permian (Sakmarian) Community Pit Formation in south-central New Mexico, U.S.A.: Systematics and palaeoecology. Abstract.

Howard J. Falcon-Lang et al. (2011): Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome. Abstract, Geology, 39: 371-374.

H.J. Falcon-Lang (2009): A Macroneuropteris scheuchzeri tree preserved in growth position in the Middle Pennsylvanian Sydney Mines Formation, Nova Scotia, Canada Atlantic Geology.

H.J. Falcon-Lang (2005): Earliest mountain forests. In PDF. Geology Today, Vol. 21. See fig. 3: A cordaite stump has been transported in an ancient river system from nearby mountains.

Howard J. Falcon-Lang and Arden R. Bashforth (2005): Morphology, anatomy, and upland ecology of large cordaitalean trees from the Middle Pennsylvanian of Newfoundland. PDF file, Review of Palaeobotany and Palynology, 135: 223-243.

Howard J. Falcon-Lang and John H. Calder: Sir William Dawson (1820-1899): a very modern paleobotanist. PDF file, Atlantic Geology, 41: 103-114. Fig. 2, 4, 5, 7: Cliffs of Joggins, pith cast preservation in growth position.
From the Atlantic Geology volume on the classic Carboniferous site at Joggins, Nova Scotia.

J.E. Francis, Earth Sciences, University of Leeds: Fossil Trees in the Basal Purbeck Formation on Portland - The Great Dirt Bed Forest.
Still available via Internet Archive Wayback Machine.
See also here.

R.A. Gastaldo et al. (2004): Erect forests are evidence for coseismic base-level changes in Pennsylvanian cyclothems of the Black Warrior Basin, USA. PDF file, in: J.C. Pashin and R.A. Gastaldo (eds): Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata. AAPG Studies in Geology 51: 219-238.

! R.A. Gastaldo et al. (1989): Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps. PDF file, Palaios.

R.A. Gastaldo et al. (1989): Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps. PDF file, Palaios.

! C. Géza et al. (2009): A possible Late Miocene fossil forest PaleoPark in Hungary. Permineralized tree stumps in situ! PDF file, from:
Jere H. Lipps and Bruno R.C. Granier (eds.) 2009, (e-book, hosted by Carnets): PaleoParks - The protection and conservation of fossil sites worldwide. Also available from here.

! M.R. Gibling et al. (2014): Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. In PDF, Proceedings of the Geologists´ Association, 125: 524-533.

! M.R. Gibling and N.S. Davies (2012): Palaeozoic landscapes shaped by plant evolution. In PDF, Nature Geoscience, 5. See especially fig. 2c!
See also here (abstract).

David R. Greenwood, Zoology Dept., Brandon University, Manitoba, Canada: Mummified tree stumps on Axel Heiberg Island, Canada (PDF file). In low grade lignite preserved tree stumps.

E.L. Gulbranson et al. (2012): Permian polar forests: deciduousness and environmental variation. In PDF, Geobiology, 10: 479-495.

J.M. Gutak and D.A. Ruban (2013): Catastrophes versus events in the geologic past: how does the scale matter? In PDF.
! Photograph of an upright stem on PDF page 5!

Juliane K. Hinz et al. (2010): A high-resolution three-dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou Formation, Junggar Basin, Northwest China). Abstract, Palaeobiodiversity and Palaeoenvironments, 90: 203-214. See also here (in PDF).

Hunterian Museum, University of Glasgow: Scottish Geology, Rhynie. A block of the Rhynie Chert showing very well preserved vertical axes.

! A Ielpi et al. (2015): Impact of Vegetation On Early Pennsylvanian Fluvial Channels: Insight From the Joggins Formation of Atlantic Canada. In PDF, Journal of Sedimentary Research, 85: 999-1018.

T.H. Jefferson (1982): Fossil forests from the lower Cretaceous of Alexander Island, Antarctica. PDF file, Palaeontology, 25: 681-708. A standing-tree fossil forest.

Joggins Fossil Centre, Joggins, Canada: The Joggins Fossil Cliffs. A UNESCO World Natural Heritage Site.

! T.P. Jones and Nick P. Rowe (eds.), Google Books: Fossil plants and spores: modern techniques. Published by Geological Society, 1999, 396 pages. Excellent! Go to page 36: Plant and spore compression in sediments (by B.W. Chaloner).

K.-P. Kelber (2007): Die Erhaltung und paläobiologische Bedeutung der fossilen Hölzer aus dem süddeutschen Keuper (Trias, Ladinium bis Rhätium) (PDF file, in German).- pp. 37-100; In: Schüßler, H. & Simon, T. (eds.): Aus Holz wird Stein - Kieselhölzer aus dem Keuper Frankens. Go to:
Fig. 3a, 3j, pith cast preservation of "Voltzia coburgensis";
Fig. 3k, pith cast preservation of "Chelepteris macropeltis".

K.-P. Kelber (2005): Makroflora (Die Keuperfloren). PDF file (12 MB), in German. In: Beutler, G., Hauschke, N., Nitsch, E. and Vath, U. (eds.): Deutsche Stratigraphische Kommission, Stratigraphie von Deutschland IV - Keuper. Cour. Forsch.-Inst. Senckenberg, 253: 32-41. Pith cast preservation of Equisetites arenaceus (plate 1, fig. n).

L. Luthardt et al. (2016): Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—Sedimentological, geochemical and palaeobotanical evidence. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 441:627–652. See also here.

B. Meyer-Berthaud and A.L. Decombeix (2012): Palaeobotany: in the shade of the oldest forest. In PDF, Nature 483: 41-42.

! M.F. Miller et al. (2016): Highly productive polar forests from the Permian of Antarctica. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 292–304. See also here (in PDF).

Forschungsstelle für Paläobotanik, Westfälische Wilhelms-Universität Münster: The Rhynie Chert and its Flora. Go to: 2. The Rhynie Chert Flora. An image showing upright standing Aglaophyton major axes.

! S.V. Naugolnykh and V.V. Mitta (2016): In situ preserved equisetophyte stems in the Upper Bajocian Parkinsoni Zone (Middle Jurassic) of the Northern Caucasus (Russia). In PDF, Palaeodiversity, 9: 113-120. See also here.

The New York Times (May 01, 2012): An Underground Fossil Forest Offers Clues on Climate Change.

S. Oplustil et al. (2014): T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: A case study from the Middle Pennsylvanian of the Czech Republic. In PDF, see also here (abstract).

Sid Perkins, Science now: ScienceShot: Ancient Forest Kept Good Company. Fossil tree stumps in a sandstone quarry near Gilboa, New York.

Picsearch: Calamites images.

Mike Pole, New Zealand:
The Biggest Tree Stump in the Curio Bay Jurassic Forest.

! G.M. Rex, W.G. Chaloner (1983): The experimental formation of plant compression fossils. PDF file, Palaeontology, 26: 231-252.

L.F. Rinehart et al. (2015): Plant architecture and spatial structure of an early Permian woodland buried by flood waters, Sangre de Cristo Formation, New Mexico. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology.

R. Rößler et al. (2014): The root systems of Permian arborescent sphenopsids: evidence from the Northern and Southern hemispheres. In PDF, see also here (abstract).

Ronny Rössler und Norbert Noll: Calamitea Cotta 1832 - eine fossile Pflanze zwischen Historie und aktueller Forschung (in German).

Sächsische Landesamt für Umwelt und Geologie (2006): Das Döhlener Becken bei Dresden - Geologie und Bergbau. PDF file, in German. Bergbau in Sachsen, vol. 12. See especially PDF page 30: Macroflora starting on PDF page 32 (by M. Barthel). Calamites pith cast on PDF page 35.

von Schauroth (1852): Ueber das Vorkommen von Voltzia coburgensis im mittleren Keupersandstein. Zeitschrift der Deutschen geologischen Gesellschaft, 4: 538-544. Provided by Pith casts of wood, the Voltzia coburgensis preservation.

Sabine Schmidt, Gravity Research Group, Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Germany: Die Erde. Go to: Biostratonomie: Fossildiagenese. Scroll down to: "Die Erhaltung von Pflanzen" (in German).

! A.C. Scott (1998): The legacy of Charles Lyell: advances in our knowledge of coal and coal-bearing strata. In PDF, Geological Society, London, Special Publications, 143: 243-260. See also here.

Z. Simunek et al. (2009): Cordaites borassifolius (Sternberg) Unger (Cordaitales) from the Radnice Basin (Bolsovian, Czech Republic). PDF file, Bulletin of Geosciences, Czech Geological Survey. Pith cast preservation in fig. 32.

Department of Paleobiology, Smithsonian Institution, Washington, D.C.: Underground Carboniferous Forest (Riola mine, Illinois). A lycopsid tree stump and a pith cast of Calamites.

W.E. Stein et al. (2012): Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Abstract, Nature, 483. Numerous Eospermatopteris root systems in life position within a mixed-age stand of trees, large woody rhizomes with adventitious roots.

L.H. Tanner and S.G. Lucas (2007): Origin of sandstone casts in the Upper Triassic Zuni Mountains Formation, Chinle Group, Fort Wingate, New Mexico (column right hand side, scroll down). New Mexico Museum of Natural History and Science Bulletin, 40.
Snapshot provided by the Internet Archive´s Wayback Machine.
See also here. (provided by Google books).
"We propose alternatively that the casts are rhizoliths formed by the deep tap roots of the sphenopsid Neocalamites."

! E.L. Taylor et al. (1992): The present is not the key to the past: a polar forest from the Permian of Antarctica. In PDF, Science, 257.

B.A. Thomas (2016): A Carboniferous Fossil Forest in North Wales: Problems and Potentials Associated with Developing and Conserving a "Soft-Rock" Site. Geoheritage.

B.A. Thomas and C.J. Cleal (2015): Cyclones and the formation of plant beds in late Carboniferous tropical swamps. Palaeobiodiversity and Palaeoenvironments, 95: 531–536. See also here (in PDF).

! B.A. Thomas (2013): In situ stems: preservation states and growth habits of the Pennsylvanian (Carboniferous) calamitaleans based upon new studies of Calamites Sternberg, 1820 in the Duckmantian at Brymbo, North Wales, UK. Abstract.

B.A. Thomas (1986): The formation of large diameter plant fossil moulds and the Walton theory of compaction. In PDF, Geological Journal, 21: 381–385. See also here (abstract).

Nigel H. Trewin, Stephen R. Fayers and Lyall I. Anderson, University of Aberdeen. The Biota of Early Terrestrial Ecosystems, The Rhynie Chert. Go to: The Rhynie Chert Flora. Polished slab of Rhynie chert showing very well preserved vertical axes of Rhynia gwynne-vaughanii.

V.P. Tverdokhlebov (2004): Buried Equisetites thickets from the Middle Triassic of the south Cis-Urals, Russia. In PDF, Neues Jahrbuch für Geologie und Palaontologie

I.M. Van Waveren et al. (2005): Taphonomy, palaeobotany and sedimentology of the Mengkarang Formation (Early Permian, Jambi, Sumatra, Indonesia). The Nonmarine Permian: Bulletin 30.

E. Vassio et al. (2008): Wood anatomy of the Glyptostrobus europaeus "whole-plant" from a Pliocene fossil forest of Italy. Abstract.

Jun Wang et al. (2012): Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. In PDF, PNAS. See also:
Ash-covered forest is "Permian Pompeii" (S. Perkins, Nature).
Penn researcher helps discover and characterize a 300-million-year-forest.
The Lost Forest.

J. Watson (1983): Two Wealden species of Equisetum found in situ. PDF file, Acta Palaeontologica Polonica, 28: 265-269.

Joan Watson and K.L. Alvin (1976): Silicone rubber casts of silicified plants from the Cretaceous of Sudan PDF file, Palaeontology, 19: 641-650.

Wikipedia, the free encyclopedia: Calamites,
Joggins, Nova Scotia, and Rhynie chert.

E.L. Zodrow et al. (2010): Medullosalean fusain trunk from the roof rocks of a coal seam: Insight from FTIR and NMR (Pennsylvanian Sydney Coalfield, Canada). In PDF, International Journal of Coal Geology, 82: 16-124. Lycophyte stump in situ on PDF page 8.
See also here (abstract).

E. Zodrow and M. Mastalerz (2009): A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada). PDF file, Bulletin of Geosciences, 84: 227-240.
! See fig. 12: In situ Calamites pith casts, Sydney Coalfield, Nova Scotia.

Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
Last updated March 20, 2017

eXTReMe Tracker