Links for Palaeobotanists

Home / Preservation & Taphonomy / Wood Decay

Taphonomy in General
Plant Fossil Preservation and Plant Taphonomy
Collecting Bias: Our Incomplete Picture of the Past Vegetation
Pith Cast and "in situ" Preservation
Three-Dimensionally Preserved Plant Compression Fossils
Permineralized Plants and the Process of Permineralization
Petrified Forests
Bacterial Biofilms (Microbial Mats)
Molecular Palaeobotany
Pyrite Preservation
Upland and Hinterland Floras
Abscission and Tissue Separation in Fossil and Extant Plants
Log Jams and Driftwood Accumulations
Wound Response in Trees
Fungal Wood Decay: Evidence from the Fossil Record

! Fungi@
! Leaf Size and Shape and the Reconstruction of Past Climates@
! Overviews of Plant Fossil Lagerstätten and Their Palaeoenvironments@

Leaf Litter and Plant Debris

S. Ash (2010), Go to PDF page 127: Stop Stop Eight: Plant Debris Beds. PDF file, SEPM-NSF Workshop "Paleosols and Soil Surface Analog Systems", September 21-26, 2010, Petrified Forest National Park, AZ.

A. Bani et al. (2018): The role of microbial community in the decomposition of leaf litter and deadwood. In PDF, Applied Soil Ecology, 126: 75-84. See also here.

C.M. Belcher (2016): The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire. In PDF, Phil. Trans. R. Soc. B, 371. See also here.

B. Berg and C. McClaugherty (2008): Plant Litter Decomposition, Humus Formation, Carbon Sequestration. Book announcement (second edition), with table of contents, including 13 chapter abstracts.

R.J. Burnham (1997): Stand characteristics and leaf litter composition of a dry forest hectare in Santa Rosa National Park, Costa Rica. In PDF, Biotropica, 29: 384395. See also here.

R.J. Burnham (1994): Patterns in tropical leaf litter and implications for angiosperm paleobotany. In PDF, Review of Palaeobotany and Palynology, 81: 99-113. See also here.

! R.J. Burnham (1993): Reconstructing Richness in the Plant Fossil Record. Abstract.

! R.J. Burnham (1989): Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Abstract, Review of Palaeobotany and Palynology, 58: 5-32. See also here (in PDF).

! A. Channing and D. Edwards (2013): Wetland megabias: Ecological and ecophysiological filtering dominates the fossil record of hot spring floras. In PDF, Palaeontology, 56: 523-556.

J.H.C. Cornelissen et al. (2017): Are litter decomposition and fire linked through plant species traits? In PDF, New Phytologist, 216: 653669.

D. Dilcher et al. (2009): A climatic and taxonomic comparison between leaf litter and standing vegetation from a Florida swamp woodland. PDF file, American Journal of Botany, 96: 1108-1115.

W.A. DiMichele et al. (2015): Early Permian fossil floras from the red beds of Prehistoric Trackways National Monument, southern New Mexico. In PDF, New Mexico Museum of Natural History and Science, Bulletin, 65: 129-139. See also here.
! Note fig. 3 and 4: Large mats of Walchia branches encased in claystones.

H. Drake and C.J. Burrows (1980): The influx of potential macrofossils into Lady Lake, north Westland, New Zealand. In PDF, New Zealand Journal of Botany, 18: 257-274.

D.K. Ferguson (2012): Plant taphonomy: 20 years of death, decay, and dissemules. Abstract, Palaios 27.

! D.K. Ferguson et al. (2009): The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene-Early Miocene Gore Lignite Measures, southern New Zealand. PDF file, International Journal of Coal Geology. Provided by the Internet Archive´s Wayback Machine.

! David K. Ferguson (2005): Plant Taphonomy: Ruminations on the Past, the Present, and the Future. Abstract, Palaios, 20: 418-428. See also here (References).

D.K. Ferguson (1985): The origin of leaf-assemblages - new light on an old problem. Abstract.

L.E. Fiorelli et al. (2013): The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores. Sci Rep., 3.

! Robert A. Gastaldo, Department of Geology, Colby College, Waterville, Maine: Notes for a course in paleobotany. This website provides information about: Taphonomy: Physiological, Necrological, and Traumatic processes,
Taphonomy: Biogeochemical Processes of Plant Fossilization and Preservational Modes,
Biostratinomic Processes in Volcaniclastic Terrains,
Biostratinomic Processes in Fluvial-Lacustrine Terrains,
Biostratinomic Processes in Coastal-Deltaic Terrains,
Biostratinomic Processes in Peat Accumulating Environments, and
Biostratinomic Processes in Marginal Marine Settings. See also: A Brief Introduction to PALEOBOTANY.

R.A. Gastaldo (2012): Taphonomic Controls on the Distribution of Palynomorphs in Tidally-influenced Coastal Deltaic Settings. In PDF, Palaios, 27: 798-810.

Robert A. Gastaldo, Department of Geology, Colby College, Waterville, Maine: A Brief Introduction to TAPHONOMY. About: Gastaldo, Savrda, & Lewis. 1996. Deciphering Earth History: A Laboratory Manual with Internet Exercises. Contemporary Publishing Company of Raleigh, Inc. ISBN 0-89892-139-2.

! R.A. Gastaldo and J.R. Staub (1999): A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires. PDF file, Palaeogeography Palaeoclimatology Palaeoecology, 149: 1-14.

R.A. Gastaldo and A.-Y. Huc (1992): Sediment facies, depositional environments, and distribution of phytoclasts in the Recent Mahakam River delta, Kalimantan, Indonesia. PDF file, Palaios. Framboidal pyrite in fig. 8B, 9B.

! R.A. Gastaldo et al. (1987): Origin, characteristics, and provenance of plant macrodetritus in a Holocene crevasse splay, Mobile Delta, Alabama. PDF file, Palaios.

! E.R. Hagen et al. (2019): No Large Bias within Species between the Reconstructed Areas of Complete and Fragmented Fossil Leaves. Abstract, Palaios, 34: 43-48. See also here (in PDF).
"... that the underrepresentation of large leaves, as captured by our study design, is probably not critical for most fossil applications. Comparing directly the reconstructed areas of complete and fragmented leaves appears reasonable, thus expanding the usefulness of fossil leaf fragments. ..."

! G.F. Hart (1986): Origin and Classification of Organic Matter in Clastic Systems. Abstract.

! M. Iniesto et al. (2018): Plant Tissue Decay in Long-Term Experiments with Microbial Mats. Open access, Geosciences, 8.
"... Plants became trapped and progressively buried by the mat community that prevents fungal invasion, mechanical cracking, and inner tissue breakages ..."

! K. Kathiresan and B.L. Bingham (2001): Biology of mangroves and mangrove ecosystems. In PDF, Advances in marine biology, 40: 81-251.
Please take notice: Chapter 7.1. "Litter decomposition and nutrient enrichment" starting on PDF page 76.

K.L. Kennedy et al. (2013): Lower Devonian coaly shales of northern New Brunswick, Canada: plant accumulations in the early stages of Terrestrial colonization. In PDF, Journal of Sedimentary Research, 83: 12021215. See also here.

N.P. Maslova et al. (2016): Phytopathology in fossil plants: New data, questions of classification. In PDF, Paleontological Journal, 50: 202208.

C.L. Meier and W.D. Bowman (2008): Links between plant litter chemistry, species diversity, and below-ground ecosystem function. In PDF, PNAS, 105: 19780-19785.

J. Mora-Gómez et al. (2015): Limits of the biofilm concept and types of aquatic biofilms. Abstract, In: Romaní AM, Guasch H, Balaguer MD (eds) Aquatic biofilms: ecology, water quality and wastewater treatment. See also here (in PDF).

J. Mora-Gómez (2014): Leaf litter decomposition in Mediterranean streams: microbial processes and responses to drought under current global change scenario. In PDF, PhD Thesis, University of Girona. See also here.

G. Pienkowski et al. (2016): Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming. In PDF, Sci. Rep., 6. See also here.

Mike Pole, New Zealand:
The Amazing Miocene Fossil Leaf Pack of Mata Creek, New Zealand.

J.S. Powers et al. (2009): Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 97: 801-811.

G.J. Retallack (2018): Leaf preservation in Eucalyptus woodland as a model for sclerophyll fossil floras. In PDF, Alcheringa: An Australasian Journal of Palaeontology, DOI: 10.1080/03115518.2018.1457180. See also here.

F. Ricardi Branco et al. (2010): Accumulation of Bio Debris and Its Relation with the Underwater Environment in the Estuary of Itanhaém River, Sâo Paulo State. In PDF. See also here.

F. Ricardi-Branco et al. (2009): Plant accumulations along the Itanhaém River basin, southern coast of São Paulo state, Brazil. In PDF, Palaios, 24: 416424. See also here (abstract).

! M.H. Scheihing and H.W. Pfefferkorn (1984): The taphonomy of land plants in the orinoco delta: A model for the incorporation of plant parts in clastic sediments of late carboniferous age of euramerica. Abstract.

M.W. Simas et al. (2013): An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a lower Permian tonstein layer (Faxinal Coalfield, Paraná Basin, Brazil). In PDF, Geologica Acta, 11: 45-57.

! R.A. Spicer (1991): Plant taphonomic processes. PDF file, in: Allison, P.A., Briggs, D.E.G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum, New York, pp. 72-113.

! R.A. Spicer (1989): The formation and interpretation of plant fossil assemblages Advances in botanical research (Google books).

R.A. Spicer (1981): The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. See also here (in PDF).

! Robert A. Spicer (1977): The pre-depositional formation of some leaf impressions. PDF file, Palaeontology, 20: 907912. A version archived by Internet Archive Wayback Machine.

S.C. Sweetman and A.N. Insole (2010): The plant debris beds of the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern England: their genesis and palaeontological significance. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 292: 409424. see also here (in PDF).

B. Switek, Fossil Plant Debris Key to UK Dinosaur Preservation.

! A.M.F. Tomescu et al. (2016): Microbes and the fossil record: selected topics in paleomicrobiology. Abstract, in: Hurst C. (ed.) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1: 69-169. See also here (in PDF).

Wikipedia, the free encyclopedia:
Plant litter..

E.L. Zodrow and J.A. D'angelo (2013): Digital compression maps: an improved method for studying Carboniferous foliage. In PDF, Atlantic Geology, 49. See also here and there.
"... The image of any freed frond segment of compression foliage that has been reprocessed digitally to represent its original structure is called a compression map. ..."

Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
Last updated June 10, 2019