Links for Palaeobotanists

Home / Introductions to both Fossil and Recent Plant Taxa / Fungi


Categories
General
Lichens
Cyanobacteria and Stromatolites
Algae
Bryophyta
Psilotophyta
Sphenophyta
Lycophyta
Filicales
Pteridospermopsida
Seed Plants in General
Gymnosperms
Cycads
Bennettitales
Gnetophyta
Ginkgoales
Coniferophyta
Angiosperms
! Fungal Wood Decay: Evidence from the Fossil Record@
! Parasitic Plants@
! Plant Roots@
Trees@
Plant Photographs@
! Paleovegetation Reconstructions@
Picture Search@


Fungi


Reinhard Agerer, Ludwig-Maximilians-Universität München, and Gerhard Rambold, Universität Bayreuth, Germany: DEEMY. An expert information system with descriptions and images for the characterization and determination of ectomycorrhizae - structures formed by fungi and the roots of forest trees. Go to: Character listing, morphology, mycorrhizal system, morphology mycorrhizal system ramification presence-type.

Anonymus (?, see also here): Leavingbio.net. This website will guide you through the main topics of Biology. Go to: Fungi.

Phil Berardelli, Science now: The Fungus That Ate the World.
Website outdated, download a version archived by the Internet Archive´s Wayback Machine.

! M.L. Berbee and J.W. Taylor (2010): Dating the molecular clock in fungi – how close are we? In PDF, Fungal Biology Reviews, 24: 1-24.

The Museum of Paleontology (UCMP), University of California at Berkeley: Introduction to the Fungi, and Fungi: Fossil Record.

! M.I. Bidartondo et al. (2011): The dawn of symbiosis between plants and fungi. In PDF, Biology Letters.

! Meredith Blackwell, Rytas Vilgalys & John W. Taylor, Tree of Life Web Project (a collaborative effort of biologists from around the world): Fungi.

! J.E. Blair (2009): Fungi. PDF file, In: S.B. Hedges and S. Kumar (eds.): The Timetree of Life (see here).

Paola Bonfante & Andrea Genre (2010): Mechanisms underlying beneficial plant - fungus interactions in mycorrhizal symbiosis. PDF file, Nature Communications.

! C. Kevin Boyce et al. (2007): Devonian landscape heterogeneity recorded by a giant fungus. PDF file, Geology, 35: 399-402.
This expired link is available through the Internet Archive´s Wayback Machine.

! Mark C. Brundrett (2002): Coevolution of roots and mycorrhizas of land plants. PDF file, New Phytologist, 154: 275-304.
This expired link is available through the Internet Archive´s Wayback Machine.

Mark Brundrett , CSIRO Forestry and Forest Products: The Mycorrhiza Site. Introduction to mycorrhizal associations, structure and development or roots and mycorrhizas. Chiefly information about Australian plants and fungi. See also:
The older webpage.
Books and cited references.
and Text books on mycorrhizas.
These expired links are available through the Internet Archive´s Wayback Machine.

! F.M. Cardillo & T.S. Samuels, Department of Biology, Manhattan College and the College of Mt. St. Vincent: WHITTAKER FIVE KINGDOM SYSTEM (1978) Plant Classification. Chapters include: KINGDOM III - Fungi

Michael Clayton, Department of Botany, University of Wisconsin, Madison: Instructional Technology (BotIT). Some image collections. Go to: Fungi Collection Tom Volk.

! Michael Clayton, Department of Botany, University of Wisconsin, Madison: Instructional Technology (BotIT). Some image collections. Excellent! Go to:
Fungi

DEEMY Characterization and DEtermination of EctoMYcorrhizae (by Ludwig-Maximilians-Universität München, Dept. Biologie I – Systematische Mykologie). DEEMY is a research database (including images) for identifying and characterizing ectomycorrhizae fungus-plant interactions.

Dennis Kunkel Microscopy, Inc.: Scientific stock photography library. Light microscope pictures and electron microscopy images featuring science and biomedical microscopy photos. Go to Fungi.

! D.L. Dilcher (1965): Epiphyllous Fungi From Eocene Deposits in Western Tennessee, U.S.A. PDF file (38.5 MB!) Palaeontographica Bd. B. 116:1-54.

N. Dotzler et al. (2011): Sphenophyllum (Sphenophyllales) leaves colonized by fungi from the Upper Pennsylvanian Grand-Croix cherts of central France. Zitteliana 51. Go to PDF page 3.

! N.L. Dotzler (2009): Microbial life in the late Paleozoic: new discoveries from the Early Devonian and Carboniferous. In PDF, Thesis, Ludwig-Maximilians-Universität München.

! D.C. Eastwood et al. (2011): The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. In PDF, Science 333. See also here. Supporting Online Material can be found here.

K. Fackler and M. Schwanninger (2012): How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. In PDF, Appl. Microbiol. Biotechnol., 96: 587-599.

M.J. Farabee, Estrella Mountain Community College Center, Avondale, Arizona: On-Line Biology Book. Introductory biology lecture notes. Go to:
BIOLOGICAL DIVERSITY: FUNGI.

K.J. Field et al. (2015): Symbiotic options for the conquest of land. In PDF, Trends in Ecology and Evolution, 30: 477-486. See also here.

! J. García Massini et al. (2012): First report of fungi and fungus-like organisms from Mesozoic hot springs. In PDF, Palaios, 27: 55–62.

C.J. Harper et al. (2017): Fungal decay in Permian Glossopteridalean stem and root wood from Antarctica. Abstract, IAWA Journal, 38: 29-48. See also here (in PDF).

C.J. Harper et al. (2015): Fungi associated with Glossopteris (Glossopteridales) leaves from the Permian of Antarctica. In PDF, Zitteliana.

Carla J. Harper (2015), Ameghiniana 52: Review of Fossil Fungi. Thomas N. Taylor, Michael Krings, Edith L. Taylor. 2015, 382 p. Academic Press, London, UK.

S.W. Heads et al. (2017): The oldest fossil mushroom. PLoS ONE, 12: e0178327.

! D. Hibbett et al. (2016): Climate, decay, and the death of the coal forests. Current Biology, 26: R563-R567: See also here (in PDF).
Please note Figure 1: Characteristics of fungal wood degradation.

! D.S. Hibbett et al. (2007): A higher-level phylogenetic classification of the Fungi. PDF file (1 MB), Mycological Research 111: 509-547.

Olivia Judson, The New York Times (June 24, 2010): Bubbles, Bread and Beer. Prototaxites in the media. With references.

R.K. Kar et al., Birbal Sahni Institute of Palaeobotany and Department of Botany, Lucknow University, India: Occurrence of fossil-wood rotters (polyporales) from the Lameta Formation (Maastrichtian), India. PDF file, slow download! Current Science vol. 85, no. 1, 2003 (published by the Current Science Association in collaboration with the Indian Academy of Sciences).

Kazinform, Astana, Kazakhstan: Towering mystery fossil was a 'shroom with a view. About the enigmatic taxa Prototaxites. See also here, and there.

K.-P. Kelber, Würzburg (2007): Die Erhaltung und paläobiologische Bedeutung der fossilen Hölzer aus dem süddeutschen Keuper (Trias, Ladinium bis Rhätium).- In German. PDF file, 33 MB! pp. 37-100; In: Schüßler, H. & Simon, T. (eds.): Aus Holz wird Stein.
! A permineralized fungal fossil from the Triassic is shown in fig. 20 (PDF page 35).

! Bryce Kendrick (Author of the book/CD-ROM "The Fifth Kingdom": All About Fungi. A compact mycological encyclopedia, including online images of mushrooms, mycorrhizas, medical mycology, yeasts, lichens, food spoilage, fermented foods, plant diseases, symbioses with animals, and edible, poisonous, and hallucinogenic fungi. Don´t miss the FUNGI FAQ's.

Hans Kerp, Forschungsstelle für Paläobotanik, Westfälische Wilhelms-Universität Münster, Germany: The Rhynie Chert and its Flora, Fungi and non-vascular Plants and Vesicular Arbuscular Mycorrhizae.

M. Krings et al. (2017): Fungi in a Psaronius root mantle from the Rotliegend (Asselian, Lower Permian/Cisuralian) of Thuringia, Germany. Abstract, Review of Palaeobotany and Palynology, 239: 4–30. See also here (in PDF).

M. Krings et al. (2012): Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica. In PDF, Mycologia, 104: 835-844. See also here.

M. Krings and T.N. Taylor (2012): Microfossils with possible affinities to the zygomycetous fungi in a Carboniferous cordaitalean ovule. In PDF, Zitteliana A 52, 3-7.

! M. Krings et al. (2012): Fungal Endophytes as a Driving Force in Land Plant Evolution: Evidence from the Fossil Record. In PDF; D. Southworth (ed.): Biocomplexity of Plant-Fungal Interactions (John Wiley & Sons).

M. Krings et al. (2011): The fossil record of the Peronosporomycetes (Oomycota). In PDF, Mycologia, 103: 445-457.

M. Krings et al. (2011): Fungal sporocarps from the Carboniferous: An unusual specimen of Traquairia. In PDF, Review of Palaeobotany and Palynology, 168: 1-6.

M. Krings et al. (2011): Fungal remains in cordaite (Cordaitales) leaves from the Upper Pennsylvanian of central France- PDF file, Bulletin of Geosciences 86.

M. Krings et al. (2010): Microfungi from the upper Visean (Mississippian) of central France: Structure and development of the sporocarp Mycocarpon cinctum nov. sp. PDF file, Zitteliana, A, 50.

! M. Krings et al. (2010): A fungal community in plant tissue from the Lower Coal Measures (Langsettian, Lower Pennsylvanian) of Great Britain. PDF file, Bulletin of Geosciences, 85.

! M. Krings, LMU München: Mikroorganismen aus den Cherts von Esnost und Combres/Lay (Unterkarbon, Frankreich) sowie Rhynie (Unterdevon, Schottland). Scientific project report (in German).

K. J. Lang, Fachgebiet Pathologie der Waldbäume, Technische Universität München (TUM): Gehölzkrankheiten in Wort und Bild, and Fäuleerreger in Wort und Bild (in German).
These expired links are available through the Internet Archive´s Wayback Machine.

! Libri Fungorum (supported by CABI Bioscience, CBS and Landcare Research). This project is coordinated by the Index Fungorum Partnership with the aim of providing a digital archive for books, journals, thesauri, indexes and other publication important to systematic mycology (fungi and fungal analogues, including yeasts, lichens, myxomycetes, downy mildews, and all their allies). Navigate from here.

! Biological Sciences, Ohio State University, Lima: Plant Biology at OSU Lima. Go to:
Kingdom Fungi.
Anatomical characteristics.

Ruta B. Limaye et al. (2007): Non-pollen palynomorphs as potential palaeoenvironmental indicators in the Late Quaternary sediments of the west coast of India. PDF file, CURRENT SCIENCE, VOL. 92, NO. 10.

! D.W. Malloch et al. (1980): Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). In PDF, PNAS, 77.

J.L. García Massini, Department of Geological Sciences, Southern Methodist University, Dallas: A Possible Endoparasitic Chytridiomycete Fungus from the Permian of Antarctica. Paleontologia Electronica 2007, 10 (3).

Martin C. Mathes, College of William and Mary, Williamsburg, VA: General Botany. This course is designed to give the students a broad background in the traditional subject matter of botany. This includes topics on organisms in the plant kingdom as well as organisms not in the plant kingdom but which affect the growth ecology or evolution of plants (e.g., selected bacteria, fungi, and selected protists).

M. Moskal-del Hoyo et al. (2010): Preservation of fungi in archaeological charcoal. PDF file, Journal of Archaeological Science, 37: 2106-2116.

L.G. Nagy et al. (2011): Understanding the Evolutionary Processes of Fungal Fruiting Bodies: Correlated Evolution and Divergence Times in the Psathyrellaceae. Syst. Biol., 60: 303-317.

M.P. Nelsen et al. (2016): Delayed fungal evolution did not cause the Paleozoic peak in coal production. In PDF, PNAS, 113. See also here (abstract).

Offwell Woodland and Wildlife Trust, Honiton, Devon, UK: The Importance of Fungi. The fascinating world of fungi.

G. Poinar (2014): Evolutionary history of terrestrial pathogens and endoparasites as revealed in fossils and subfossils. In PDF, Advances in Biology. See also here (abstract).

Silvia Pressel et al. (2010): Fungal symbioses in bryophytes: New insights in the Twenty First Century. PDF file, Phytotaxa, 9: 238-253. See also here (open access).

E.M. Roberts et al. (2016): Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture. PLoS ONE, 11.

A.R. Schmidt et al. (2014): Amber fossils of sooty moulds. In PDF, Review of Palaeobotany and Palynology, 200: 53-64.

Alexander R. Schmidt et al.: Carnivorous Fungi from Cretaceous Amber. PDF file, Science, 2007: 1743.

A.B. Schwendemann et al. (2011): Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer. In PDF.

A.B. Schwendemann et al. (2009): Combresomyces cornifer from the Triassic of Antarctica: Evolutionary stasis in the Peronosporomycetes. In PDF, Review of Palaeobotany and Palynology, 154: 1-5.

Peter v. Sengbusch, Botanik Online: Wechselwirkungen zwischen Pflanzen und Pilzen; Evolution parasitischer und symbiotischer Beziehungen zwischen ihnen (in German).

M.-A. Selosse et al. (2015): Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. New Phytologist. 10th New Phytologist Workshop on the "Origin and evolution of plants and their interactions with fungi", London, UK, September 2014.

M.A. Selosse and C. Strullu-Derrien (2015): Origins of the terrestrial flora: A symbiosis with fungi? In PDF, BIO Web of Conferences, 4.

! M.-A. Selosse and F. Rousset (2011): The Plant-Fungal Marketplace. In PDF, Science.

B.J. Slater et al. (2014): A high-latitude Gondwanan lagerstätte: The Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. In PDF, Gondwana Research. On PDF page 16: Reconstruction of the Lambert Graben Middle Permian Alluvial valley palaeoecosystem, With bracket fungus on a fallen log in the foreground.

B.J. Slater et al. (2013): Peronosporomycetes (Oomycota) from a Middle Permian Permineralised Peat within the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica.

Smithsonian Science: Fungi still visible in wood charcoal centuries after burning.

! M. Speranza et al. (2010): Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. In PDF, In: A. Méndez-Vilas and J. Díaz (eds.): Microscopy: Science, Technology, Applications and Education. See also here.

Hans Steur, Ellecom, The Netherlands: Hans´ Paleobotany Pages. Plant life from the Silurian to the Cretaceous. Go to:
Prototaxites, a huge, 400 million years old, fungus? Or an enormous lichen?

! C. Strullu-Derrien et al. (2016): Origins of the mycorrhizal symbioses. PDF file, In: F Martin (ed.): Molecular Mycorrhizal Symbiosis, John Wiley & Sons.

C. Strullu-Derrien et al. (2011): Evidence of parasitic Oomycetes (Peronosporomycetes) infecting the stem cortex of the Carboniferous seed fern Lyginopteris oldhamia. IN PDF, Proc. R. Soc. B, 278: 675-680.

L.H. Tanner and S.G. Lucas (2013): Degraded wood in the Upper Triassic Petrified Forest Formation (Chinle Group), northern Arizona: Differentiating fungal rot from arthropod boring. In PDF, p. 582-588; in: Tanner, L.H., Spielmann, J.A. and Lucas, S.G. (eds.): The Triassic System. New Mexico Museum of Natural History and Science, Bulletin 61.

! T.N. Taylor et al. (2015): Fungal Diversity in the Fossil Record. In PDF, see also here (abstract).

T.N. Taylor et al. (2011): The advantage of thin section preparations over acetate peels in the study of late Paleozoic fungi and other microorganisms. Abstract, Palaios. See also here.

! T.N. Taylor and M. Krings (2010): Paleomycology: the re-discovery of the obvious. PDF file, PALAIOS, 25: 283-286.

! Thomas N. Taylor and Michael Krings (2005): Fossil microorganisms and land plants: Associations and interactions. PDF file, Symbiosis, 40: 119-135.

! T.N. Taylor et al. (2004): Fungi from the Rhynie Chert: A view from the dark side. In PDF, Transactions of the Royal Society of Edinburgh, Earth Sciences, 94: 457-473.

T.N. Taylor and J.M. Osborn (1996): The importance of fungi in shaping the paleoecosystem. Abstract, Review of Palaeobotany and Palynology.

T.N. Taylor and J.M. Osborn (1992): The Role of Wood in Understanding Saprophytism in the Fossil Record. PDF file.

Nigel H. Trewin, Stephen R. Fayers & Lyall I. Anderson, University of Aberdeen: The Biota of Early Terrestrial Ecosystems - The Rhynie Chert: Fungi.

University of Illinois at Urbana-Champaign: Wood Rots and Decays. In PDF.

! M.G.A. van der Heijden et al. (2015): Mycorrhizal ecology and evolution: the past, the present, and the future. In PDF, New Phytologist, 205: 1406–1423. See also here.

Henk Visscher et al. (2011): Fungal virulence at the time of the end-Permian biosphere crisis? Abstract, Geology, 39. See also:
Fungi helped destroy forests during mass extinction 250 million years ago. By Robert Sanders, UC Berkely News Center, August 5, 2011.
Forest-killing fungi could multiply in a warming world. By Bob Berwyn, August 8, 2011.

! B. Wang and Y.-L. Qiu (2006): Phylogenetic distribution and evolution of mycorrhizas in land plants. In PDF, Mycorrhiza, 16: 299-363. See also here.

The Washington Post: Scientists Find Fossils in Sexual Union. (The Associated Press, November 3, 2005). "Swarm cells" of the fungus Myxomycetes. See also here, (Glasgow Daily Record, UK), and there (The Hindu).

Wikipedia, the free encyclopedia:
! Mycology,
and Fungus.
See also: Pilze,
and Baumpilze (in German).

Wikispaces, Tangient LLC, San Francisco, CA:
CDS Biology Website:
The Colonization of Land by Plants and Fungi. Powerpoint presentation.

! J.P. Wilson et al. (2017): Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. In PDF, New Phytologist, 215: 1333–1353. See also here.
! Figure 2 shows the fungal evolution and abundance of coal basin sediments over the Phanerozoic.

Michael Wood: MykoWeb. WWW pages devoted to the science of mycology.

! The WWW Virtual Library: Mycology.












Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated November 04, 2017