Links for Palaeobotanists

Home / Introductions to both Fossil and Recent Plant Taxa / Ginkgoales


Categories
General
Fungi
Lichens
Cyanobacteria and Stromatolites
Algae
Bryophyta
Psilotophyta
Sphenophyta
Lycophyta
Filicales
Pteridospermopsida
Seed Plants in General
Gymnosperms
Cycads
Bennettitales
Gnetophyta
Coniferophyta
Angiosperms
Trees@
! Herbaria@
! Taxonomy and Plant Classification Databases@
! Living Fossils@
Plant Photographs@
! Paleovegetation Reconstructions@
Picture Search@


Ginkgoales


! Nan Crystal Arens, C. Strömberg and A. Thompson, Department of Integrative Biology, and Paleobotany Section, Museum of Paleontology (UCMP), University of California at Berkeley: Virtual Paleobotany. Go to: Ginkgo, Cordaites and the Conifers.

R. Barboni and T.L. Dutra (2015): First record of Ginkgo-related fertile organs (Hamshawvia, Stachyopitys) and leaves (Baiera, Sphenobaiera) in the Triassic of Brazil, Santa Maria formation. In PDF, Journal of South American Earth Sciences, 63: 417-435.

K. Bauer et al. (2014): Ginkgophytes from the upper Permian of the Bletterbach gorge (northern Italy). In PDF, see also here.

K. Bauer et al. (2013): Fossil ginkgophyte seedlings from the Triassic of France resemble modern Ginkgo biloba. In PDF, BMC Evolutionary Biology, 13.

K. Bauer et al. (2013): The ginkgophytes from the German Kupferschiefer (Permian), with considerations on the taxonomic history and use of Baiera and Sphenobaiera. In PDF, Bulletin of Geosciences, 88: 539-556.

D.J. Beerling et al. (1998): Stomatal responses of the "living fossil" Ginkgo biloba L. to changes in atmospheric CO2 concentrations. PDF file, Journal of Experimental Botany, 49: 1603-1607.

! Branko M. Begovic Bego (2011): Nature´s Miracle, Ginkgo biloba L. 1771. In PDF (40.5 MB!). Table of contents PDF page 9-11. See especially: PDF page 49: "Ancestors and relatives of Ginkgo biloba".
See also here. Access via Scribd.

The Museum of Paleontology (UCMP), University of California, Berkeley: Introduction to the Ginkgoales.

B. Bomfleur et al. (2014): Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana. In PDF, International Journal of Plant Sciences.

! C.K. Boyce (2008): Seeing the forest with the leaves-clues to canopy placement from leaf fossil size and venation characteristics. In PDF, Geobiology. Provided by the Internet Archive´s Wayback Machine.

Benjamin Burger, Utah State University, Vernal, Utah:
Why study fossil plants?
Invertebrate Paleontology and Paleobotany.
How did plants colonize the land, based on the fossil record?
How did the first seed plants (the Gymnosperms) evolve?
How did gymnosperms diversify during the early Mesozoic to become a modern dominate plant group?
How good is the fossil record of Cycads?
! What is the significance of the fossil record of Ginkgo?
What is the fossil record of Horsetails?
Fossil Algae.
What is an Angiosperm?
Video lectures.

Curtis Clark, Biological Sciences Department California State Polytechnic University, Pomona: Plant Morphology. Resources. Go to: Lab 12: Cycadophyta, Ginkgophyta.

Adam Dimech, Burnley College, University of Melbourne, Australia: Plant Evolution. This website is designed to serve as an introduction to the theory behind the evolution of the world's flora, with some emphasis placed on the Australian flora. Go to: The Ginkgoales: A Case Study.

! dmoz, the Open Directory Project:
Science: Biology: Flora and Fauna: Plantae:
Ginkgophyta. See also:
Earth Sciences: Paleontology: Paleobotany: Taxa.

! Christopher J. Earle (server space has been provided by the Department of Botany, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany): The Gymnosperm Database. Currently the database provides basic information for all species and higher-ranked taxa of the gymnosperms, i.e., conifers, cycads, and their allies. You may navigate from the Gymnosperm Database Site Map Ginkgoales.

M. Eberlein (2015): Bestimmungs- und Verbreitungsatlas der Tertiärflora Sachsens – Angiospermenblätter und Ginkgo. PDF file (in German). Thesis, University of Dresden. First part of a reference book of the Tertiary flora of Saxony. See also here (abstract).

T.C. Fischer et al. (2010). Permian Ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L. PDF file, BMC Evolutionary Biology, 10.

Debbie Folkerts, Auburn University, Auburn, Alabama: Kingdom Plantae: Gymnosperms. Powerpoint presentation.

Anja Fuchs, Landshut, Germany: About Ginkgo. PDF file, in German. See also here.

! Florida Museum of Natural History, University of Florida, Gainesville:
Cycads and Ginkgo (Powerpoint presentatation).

Robert A. Gastaldo, Department of Geology, Colby College, Waterville, Maine: Gymnosperms in the Mesophytic.

Google Directory:
! Science > Biology > Flora and Fauna > Plantae > Ginkgophyta.
Link directory, with ratings (Google page rank).

M. Haworth and A. Raschi (2014): An assessment of the use of epidermal micro-morphological features to estimate leaf economics of Late Triassic-Early Jurassic fossil Ginkgoales. In PDF, Review of Palaeobotany and Palynology, 205: 1-8.

Jason Hilton (2007): Living Fossils, Ginkgo biloba - its ancestors and allies. Website hosted by The International Organisation of Palaeobotany (IOP).

Jason Hilton (2007): Living Fossils, Ginkgo biloba - its ancestors and allies. Website hosted by The International Organisation of Palaeobotany (IOP).

Z. Jiang et al. (2016): A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution. Sci. Rep., 6.

W. Jung: Der Ginkgo-Baum, ein Unikum mit Vergangenheit. In German.

Jirí Kvacek et al. (2005): A new Late Cretaceous ginkgoalean reproductive structure Nehvizdyella gen. nov. from the Czech Republic and its whole-plant reconstruction. PDF file, American Journal of Botany, 92: 1958-1969.

Cor Kwant, The Netherlands: The Ginkgo Pages. See especially: Fossils and Ginkgo fossils: picture gallery.
Also worth checking out: Links.

A. Leigh et al. (2011): Structural and hydraulic correlates of heterophylly in Ginkgo biloba. In PDF, New Phytologist, 189: 459-470.

Department of Botany, University of Wisconsin, Madison: Plant Systematics Collection. This web site provides structured access to a teaching collection of plant images representing over 250 families and 1000 genera of vascular plants. Go to: Phylum Ginkgophyta.

Dominique Mouchel (?), France: Ginkgo biloba.

Nature brief communications: Palaeobiology: The missing link in Ginkgo evolution. Ginkgo species from the Lower Cretaceous Zhuanchengzhi Bed of the Yixian Formation, China. Nature 423, 821 - 822, 2003.

Dan Nickrent and Karen Renzaglia, Department of Plant Biology, Southern Illinois University at Carbondale: Land Plants Online, Ginkgo - Phylum Ginkgoophyta.

! Y. Ogura, Department of Botany, Faculty of Science, University of Tokyo, Tokyo, Japan, (page hosted by Botany online, The Internet Hypertextbook, Biological Classics in the Internet): HISTORY OF DISCOVERY OF SPERMATOZOIDS IN GINKGO BILOBA AND CYCAS REVOLUTA. PHYTOMORPHOLOGY, Vol 17, 109 - 114 (1967).

Kathleen B. Pigg, Department of Plant Biology, Arizona State University: Plant Fossils and Evolution (now via wayback link). Go to: Laboratory. The Cycads, Cycadeoids (Bennettitales) and Ginkgophytes.

C. Pott et al. (2016): New Ginkgophytes from the Upper Triassic–Lower Cretaceous of Spitsbergen and Edgeøya (Svalbard, Arctic Norway): The History of Ginkgoales on Svalbard. In PDF, Int. J. Plant Sci., 177: 175–197.

! Christian Pott and Michael Krings (2010): Gymnosperm Foliage from the Upper Triassic of Lunz, Lower Austria: an annotated check list and identifiation key. PDF file, Geo.Alp, 7: 19-38.

! C. Quan et al. (2010): A new Tertiary Ginkgo (Ginkgoaceae) from the Wuyun Formation of Jiayin, Heilongjiang, northeastern China and its paleoenvironmental implications. PDF file, American Journal of Botany.

Tim Rhodus, Department of Horticulture and Crop Science, Ohio State University: Ginkgo biloba.

Gar W. Rothwell, Department of Environmental and Plant Biology, Ohio University, Athens, OH: Vascular Plant Morphology. This course covers the structure, development, reproductive biology and relationships of vascular plants. The course is structured to emphasize the evolutionary changes that led to the diversity of modern tracheophytes. Go to Ginkgophytes (PDF file).

Dana L. Royer, Leo J. Hickey, and Scott L. Wing: Ecological conservatism in the "living fossil" Ginkgo. (PDF file), Paleobiology, 29(1), 2003, pp. 84–104.

H. Süss and L. Müller (2015): Ein Stamm- und Wurzelholzfossil der Morphogattung Ginkgoxylpropinquus Savidge aus dem Tertiär der sächsischen Braunkohle, mit Bemerkungen über die Stellung der Ginkgoales innerhalb der Gymnospermen aus holzanatomischer Sicht. PDF file, in German. Geologica Saxonica, 60: 451-460.

H. Süss and K.-P. Kelber (2011): Eine neue Art der Morphogattung Baieroxylon Greguss aus dem Keuper von Franken, Deutschland. In PDF, Feddes Repertorium, 122: 257-267.

H. Süss et al. (2009): Drei neue fossile Hölzer der Morphogattung Primoginkgoxylon gen. nov. aus der Trias von Kenia. PDF file (in German), Feddes Repertorium, 120: 273 - 292. See also here (Abstract).

Ralph E. Taggart, Department of Botany and Plant Pathology/Department of Geological Sciences at Michigan State University, East Lansing:
! BOT335 Lecture Schedule. Some interesting chapters in terms of palaeobotany, e.g.
The First Vascular Land Plants;
Carboniferous Forests;
Arborescent Lycopods;
Psaronius: a Carboniferous tree-fern;
Carboniferous Horsetails;
Carboniferous Seed Ferns;
The Evolution of Conifers;
Cycadophytes, the True Cycads;
Mesozoic Cycadeoids;
Ginkgophytes;
North American Redwoods, Past and Present.
These expired links are available through the Internet Archive´s Wayback Machine.

Alejandro Troncoso (Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Chile) & Rafael Herbst, (PRINGEPA-CONICET, Corrientes, Argentina): Ginkgoales del Triásico del norte de Chile (in Spain). Rev. geol. Chile, Dec. 1999, vol.26, no. 2.

WANG Jun, H.W. Pfefferkorn, SUN Bainian & LIU Lujun: Discovery of organic connection of Chiropteris Kurr and Nystroemia Halle from Early Permian of western Henan, China. PDF file (32 MB !), Chinese Science Bulletin, 2003, Vol. 48, No. 20, p. 2248-2252.

Y. Wang et al. (2012): Jurassic mimicry between a hangingfly and a ginkgo from China. In PDF, Proc. Nat. Acad. Sci. USA, 109: 20514-20519.

Y. Wang et al. (2005): Cuticular anatomy of Sphenobaiera huangii (Ginkgoales) from the lower Jurassic of Hubei, China. In PDF, American Journal of Botany, 92: 709-721.

Z. Wang et al. (2017): A New Species of Ginkgo with Male Cones and Pollen Grains in situ from the Middle Jurassic of Eastern Xinjiang, China. In PDF.

! Wikipedia (a free-content encyclopedia): Spermatophyte. Go to: Ginkgo.

J.P. Wilson and A.H. Knoll (2010): A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. PDF file, Paleobiology, 36: 335-355.

SanPing XIE et al. (2009): Altitudinal variation in Ginkgo leaf characters: Clues to paleoelevation reconstruction. PDF file, Science in China Series D: Earth Sciences, 52: 2040-2046.
"The results show that leaf area, petiole length, and stomatal parameters have no obvious linear relationship with altitude (...). The results also suggest that the differences in stomatal density and stomatal index between sun and shade leaves had more influence on paleoelevation reconstruction than that in other parameters".

Z. Zhiyan and W. Xiangwu (2006): The rise of ginkgoalean plants in the early Mesozoic: a data analysis. In PDF, Geo. J., 41: 363-375.

! Zhiyan Zhou (website hosted by International Organisation of Palaeobotany): Gingko biloba: its ancestors and allies.













Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated March 03, 2017


















eXTReMe Tracker