Links for Palaeobotanists

Home / Preservation & Taphonomy / Pith Cast and "in situ" Preservation


Categories
Taphonomy in General
Plant Fossil Preservation and Plant Taphonomy
Collecting Bias: Our Incomplete Picture of the Past Vegetation
Cuticles
Three-Dimensionally Preserved Plant Compression Fossils
Permineralized Plants and the Process of Permineralization
Petrified Forests
Bacterial Biofilms (Microbial Mats)
Molecular Palaeobotany
Pyrite Preservation
Amber
Upland and Hinterland Floras
Abscission and Tissue Separation in Fossil and Extant Plants
Leaf Litter and Plant Debris
Log Jams and Driftwood Accumulations
Wound Response in Trees
Wood Decay

! Plant Roots@
! Fossil Charcoal@
! Coalification@


Pith Cast and "in situ" Preservation


! University of Aberdeen: The Rhynie Chert Flora. See also The Biota of Early Terrestrial Ecosystems: The Rhynie Chert. A learning resource website.

P. Appleton et al. (2015; article starts on PDF page 21): Making the most of Brymbo’s plant fossils . Earth Heritage, 43.
Note photograph on PDF page 22: sediment-filled casts of Calamites stems in growth position.

P. Appleton et al. (2011): The Brymbo Fossil Forest. In PDF, Geology Today, 27: 107–113.

Nan Crystal Arens, C. Strömberg and A. Thompson: Sphenopsids and Ferns, The Sphenopsids.

Chester A. Arnold (1956): A new calamite from Colorado (PDF file). Diagrammatic Calamites reconstruction in fig. 1.

S.R. Ash (1967): The Chinle (Upper Triassic) megaflora of the Zuni Mountains, New Mexico. In PDF, New Mexico Geological Society, 18th Annual Field Conference Guidebook, 125-131.
Note fig. 1: Pith cast of the stem and rhizome of Neocalamites sp.

M. Banerjee (2005): Autochthonous deposition of Indian coal beds with palaeobotanical evidences of in-situ plants from Saharjuri Basin, Jharkhand. In PDF, Current Science, 88: 1487-1490.

A.R. Bashforth et al. (2014): Paleoecology of Early Pennsylvanian vegetation on a seasonally dry tropical landscape (Tynemouth Creek Formation, New Brunswick, Canada). In PDF, Review of Palaeobotany and Palynology, 200: 229–263. See also here.
Note fig. 6, 7: Upright cordaitalean trees.
Fig. 8C, 8D: Upright Calamites axes.

A.R. Bashforth and W.A. DiMichele (2012): Permian Coal Forest offers a glimpse of late Paleozoic ecology. In PDF, PNAS, 109: 4717-4718.

A.R. Bashforth et al. (2010): Vegetation heterogeneity on a Late Pennsylvanian braided-river plain draining the Variscan Mountains, La Magdalena Coalfield, northwestern Spain. PDF file, Palaeogeography, Palaeoclimatology, Palaeoecology.

C.M. Berry and J.E.A. Marshall (2015): Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard. In PDF, Geology, 43: 1043-1046.

! D.J. Bottjer (2016): Paleoecology: Past, Present and Future. Book announcement (Wiley).
! See also here (in PDF).
! Note figure 11.3 (on PDF page 148): Upright stump of the lycopsid Sigillaria rooted into the top of a coal seam.

M. Brea et al. (2015): Reconstruction of a fossil forest reveals details of the palaeoecology, palaeoenvironments and climatic conditions in the late Oligocene of South America. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 418: 19-42.

Mariana Brea et al. (2009): Darwin forest at agua de la zorra: the first in situ forest discovered in South America by Darwin in 1835. PDF file, Revista de la Asociación Geológica Argentina, 64: 21-31. Permineralized fossil tree stumps in growth position.

Mariana Brea et al. (2008): Ecological reconstruction of a mixed Middle Triassic forest from Argentina. PDF file, Alcheringa, 32: 365-393. See also here.-The Darwin Forest consists of 120 stumps in life position!

! J.H. Calder et al. (2006): A fossil lycopsid forest succession in the classic Joggins section of Nova Scotia: Paleoecology of a disturbance-prone Pennsylvanian wetland. Abstract, in: S.F. Greb and W.A. DiMichele (eds.): GSA Special Papers, Wetlands through Time, 399: 169-194. See also here (in PDF), and there (Google books).

! B.W. Chaloner (1999; starting on PDF page 36): Plant and spore compression in sediments. In: T.P. Jones and Nick P. Rowe (eds.), Fossil plants and spores: modern techniques. Published by Geological Society, 396 pages. Excellent! Provided by Google Books.

Michael Clayton, Department of Botany, University of Wisconsin, Madison: Instructional Technology (BotIT). Some image collections. Excellent! Go to:
Equisetales. Fossil sphenophytes.

H.G. Coffin (1997): The Yellowstone petrified "forests". In PDF.

Harold G. Coffin, Geoscience Research Institute, Loma Linda, CA (This institute serves the Seventh-day Adventist church): THE YELLOWSTONE PETRIFIED "FORESTS". All about the petrified forests of Yellowstone National Park in Wyoming and Montana.

Cindy Creighton, Springhill, Nova Scotia: Nova Scotia Fossils. Calamites pith casts from Cumberland County, Nova Scotia.

N.R. Cúneo et al. (2003): In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 197: 239-261.

! N.S. Davies and M.R. Gibling (2013): The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. In PDF, Earth-Science Reviews, 120: 40–79. See also here.

Carleton William Degges Department of Geology, Colby College, Waterville, ME: CARBONIFEROUS PITH-CASTING MECHANISMS AND SEDIMENTOLOGY OF THE MARY LEE COAL-SEAM SPLIT IN NORTHWESTERN WALKER COUNTY, ALABAMA. Abstract.

! W.A. DiMichele (2014): Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. Int. J. Plant Sci., 175: 123-164. See also here (in PDF).
Large Sigillaria stump cast on PDF page 11. Reconstructions of coal swamps and some dryland plant reconstructions with Cordaitalean trees and Walchian conifers.

W.A. DiMichele et al. (2013): Growth habit of the late Paleozoic rhizomorphic tree-lycopsid family Diaphorodendraceae: Phylogenetic, evolutionary, and paleoecological significance. In PDF, American Journal of Botany, 100: 1-22.

! W.A. DiMichele and H.J. Falcon-Lang (2012): Calamitalean "pith casts" reconsidered. In PDF, Review of Palaeobotany and Palynology. See also here (abstract).

! W.A. DiMichele and H.J. Falcon-Lang (2011): Pennsylvanian "fossil forests" in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. PDF file, Journal of the Geological Society, London, 168: 585-605. See fig. 14 (PDF page 17),

W.A. DiMichele et al. (2009): Catastrophically buried Middle Pennsylvanian Sigillaria and calamitean sphenopsids from Indiana, USA: What kind of vegetation was this? PDF file, Palaios, 24: 159-166.

W.A. DiMichele et al. (1996): A drowned lycopsid forest above the Mahoning coal (Conemaugh Group, Upper Pennsylvanian) in eastern Ohio, USA. PDF file, International Journal of Coal Geology, 31.

M. Dolezych and W. Schneider (2006): Inkohlte Hölzer und Cuticulae dispersae aus dem 2. Miozänen Flözhorizont im Tagebau Welzow (Lausitz)–Taxonomie und vergleichende feinstratigraphisch-fazielle Zuordnung. PDF file, in German. Zeitschrift für geologische Wiss. See also here.
Note photographs of tree stumps on plate 2.

M. Dolezych (2005): Koniferenhölzer im Lausitzer Flöz und ihre ökologische Position. PDF file, in German, with English summary (starting on PDF page 27). LLP Contributions Series, 19. See also here.
Note photographs on PDF page 312, 313, 336.

! S.G. Driese et al. (1997): Morphology and taphonomy of root and stump casts of the earliest trees (Middle to Late Devonian), Pennsylvania and New York, U.S.A. In PDF, PALAIOS, 12: 524–537. See also here.

R.F. Dubiel (1987): Sedimentology of the Upper Triassic Chinle Formation Southeastern Utah: Paleoclimatic Implications. In PDF, Journal of the Arizona-Nevada Academy of Science.
See fig. 8: Horsetail pith casts, formed when the hollow trunks of the horsetails were broken off and filled with sediment during a flood event.

Centro di Paleontologia Vegetale della Foresta Fossile di Dunarobba, Dunarobba, Italy: Foresta Fossile di Dunarobba (in Italian). See also here (Wikipedia) and there (Mineralienatlas, with citations, in German). See especially The Fossil Forest of Dunarobba (Umbriantravel, in English).
Neogene tree stumps in situ!

H.J. Falcon-Lang (2015): Small cordaitalean trees in a marine-influenced coastal habitat in the Pennsylvanian Joggins Formation, Nova Scotia. Journal of the Geological Society, 162, 485-500. See also here (in PDF).

! H.J. Falcon-Lang (2015): A calamitalean forest preserved in growth position in the Pennsylvanian coal measures of South Wales: Implications for palaeoecology, ontogeny and taphonomy. In PDF, Review of Palaeobotany and Palynology. See also here (abstract).

H.J. Falcon-Lang et al. (2014): Coniferopsid tree trunks preserved in sabkha facies in the Permian (Sakmarian) Community Pit Formation in south-central New Mexico, U.S.A.: Systematics and palaeoecology. Abstract.

Howard J. Falcon-Lang et al. (2011): Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome. Abstract, Geology, 39: 371-374.

H.J. Falcon-Lang (2009): A Macroneuropteris scheuchzeri tree preserved in growth position in the Middle Pennsylvanian Sydney Mines Formation, Nova Scotia, Canada Atlantic Geology.

H.J. Falcon-Lang (2005): Earliest mountain forests. In PDF. Geology Today, Vol. 21. See fig. 3: A cordaite stump has been transported in an ancient river system from nearby mountains.

H.J. Falcon-Lang and A.R. Bashforth (2005): Morphology, anatomy, and upland ecology of large cordaitalean trees from the Middle Pennsylvanian of Newfoundland. PDF file, Review of Palaeobotany and Palynology, 135: 223-243. See Fig. 11: Whole plant reconstruction of a large cordaitalean tree.

Howard J. Falcon-Lang and John H. Calder: Sir William Dawson (1820-1899): a very modern paleobotanist. PDF file, Atlantic Geology, 41: 103-114. Fig. 2, 4, 5, 7: Cliffs of Joggins, pith cast preservation in growth position.
From the Atlantic Geology volume on the classic Carboniferous site at Joggins, Nova Scotia.

J.E. Francis, Earth Sciences, University of Leeds: Fossil Trees in the Basal Purbeck Formation on Portland - The Great Dirt Bed Forest.
Still available via Internet Archive Wayback Machine.
See also here.

R.A. Gastaldo et al. (2020): The Coal Farms of the Late Paleozoic. In PDF. See also here.

R.A. Gastaldo et al. (2004): Erect forests are evidence for coseismic base-level changes in Pennsylvanian cyclothems of the Black Warrior Basin, USA. PDF file, in: J.C. Pashin and R.A. Gastaldo (eds): Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata. AAPG Studies in Geology 51: 219-238.

! R.A. Gastaldo et al. (1989): Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps. PDF file, Palaios.

R.A. Gastaldo et al. (1989): Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps. PDF file, Palaios.

! C. Géza et al. (2009): A possible Late Miocene fossil forest PaleoPark in Hungary. Permineralized tree stumps in situ! PDF file, from:
Jere H. Lipps and Bruno R.C. Granier (eds.) 2009, (e-book, hosted by Carnets): PaleoParks - The protection and conservation of fossil sites worldwide. Also available from here.

M.R. Gibling et al. (2014): Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. In PDF, Proceedings of the Geologists’ Association, 125: 524–533. See also here.
Note fig. 2E: Log accumulation at base of braided-fluvial channel.
Note fig. 2F: Upright lycopsid tree, 1.5 m tall.

! M.R. Gibling et al. (2014): Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. In PDF, Proceedings of the Geologists´ Association, 125: 524-533.

! M.R. Gibling and N.S. Davies (2012): Palaeozoic landscapes shaped by plant evolution. In PDF, Nature Geoscience, 5. See also here (abstract).

David R. Greenwood, Zoology Dept., Brandon University, Manitoba, Canada: Mummified tree stumps on Axel Heiberg Island, Canada (PDF file). In low grade lignite preserved tree stumps.

E.L. Gulbranson et al. (2020): When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 541.
See also here (in PDF).
Note figure 6C, D: In situ stumps.

E.L. Gulbranson et al. (2012): Permian polar forests: deciduousness and environmental variation. Abstract, Geobiology, 10: 479–495. See also here and there (in PDF). Note upright permineralized stumps in fig. 3 and 6. Please also note:
N. Scharping (2017): Antarctic Fossils Reveal the Continent´s Lush Past. Discover Magazine.

J.M. Gutak and D.A. Ruban (2013): Catastrophes versus events in the geologic past: how does the scale matter? In PDF.
! Photograph of an upright stem on PDF page 5!

M. Hámor-Vidó et al. (2010): In situ preservation and paleoenvironmental assessment of Taxodiacea fossil trees in the Bükkalja Lignite Formation, Bükkábrány open cast mine, Hungary. In PDF, International Journal of Coal Geology, 81: 203–210. See also here.

M. Havelcová et al. (2013): “Stump Horizon” in the Bílina Mine (Most Basin, Czech Republic)—GC–MS, optical and electron microscopy in identification of wood biological origin. In PDF, International Journal of Coal Geology, 107: 62–77. See also here.

J.J. Hayward and B.W. Hayward (1995): Fossil forest preserved in volcanic ash and lava at Ihumatao and Takapuna, Auckland. In PDF, Tane, 35: 127–142.
Note Fig. 2: Lava mould of tree stumps preserved in-situ at Takapuna reef.

Juliane K. Hinz et al. (2010): A high-resolution three-dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou Formation, Junggar Basin, Northwest China). Abstract, Palaeobiodiversity and Palaeoenvironments, 90: 203-214. See also here (in PDF).

Hunterian Museum, University of Glasgow: Scottish Geology, Rhynie. A block of the Rhynie Chert showing very well preserved vertical axes.
This expired link is now available through the Internet Archive´s Wayback Machine.

! A Ielpi et al. (2015): Impact of Vegetation On Early Pennsylvanian Fluvial Channels: Insight From the Joggins Formation of Atlantic Canada. In PDF, Journal of Sedimentary Research, 85: 999-1018.

A. Ielpi et al. (2014): Role of vegetation in shaping Early Pennsylvanian braided rivers: architecture of the Boss Point Formation, Atlantic Canada. In PDF, Sedimentology, 61: 1659–1700. See also here.
"... A large supply of woody debris triggered channel blockage and avulsion, and active channel margins and islands within the channel belts were initially colonized by pioneer vegetation and subsequently stabilized by large trees. ..."

V.S. Isaev et al. (2018): The fossil Permian plants from the Vorkuta series, Pechora Coal basin. Recent acquisitions in the collection of the Earth Science Museum at Lomonosov Moscow University. Moscow University Bulletin. Series 4. Geology. See also here (in PDF).
Note fig. 3: A giant Permian dragonfly produces the ovipositions on the shoot of a large equisetophyte.
Note Photo series 2, fig: 3: Paracalamites aff. frigidus Neuburg; two shoots preserved vertically within the layer, in situ.

V.S. Isaev et al. (2018): Permian Fossil Plants from the Sediments of the Vorkuta Series at the Pechora Coal Basin in the Collection of the Earth Science Museum of Moscow State University. Moscow University Geology Bulletin, 73: 434–443. See also here (in PDF).
Note fig. 2: The shoot of Paracalamitina cf. striata Zalessky emend. Naug. equisetophyte with probable ovipositions of dragonflies.
Note photo series 1, fig. 3: 3, Paracalamites aff. frigidus Neuburg; shoots preserved vertically within the layer.

T.H. Jefferson (1982): Fossil forests from the lower Cretaceous of Alexander Island, Antarctica. PDF file, Palaeontology, 25: 681-708. A standing-tree fossil forest.

Joggins Fossil Centre, Joggins, Canada: The Joggins Fossil Cliffs. A UNESCO World Natural Heritage Site.

K.-P. Kelber (2007): Die Erhaltung und paläobiologische Bedeutung der fossilen Hölzer aus dem süddeutschen Keuper (Trias, Ladinium bis Rhätium) (PDF file, in German).- pp. 37-100; In: Schüßler, H. & Simon, T. (eds.): Aus Holz wird Stein - Kieselhölzer aus dem Keuper Frankens. Go to:
Fig. 3a, 3j, pith cast preservation of "Voltzia coburgensis";
Fig. 3k, pith cast preservation of "Chelepteris macropeltis".

K.-P. Kelber (2005): Makroflora (Die Keuperfloren). PDF file (12 MB), in German. In: Beutler, G., Hauschke, N., Nitsch, E. and Vath, U. (eds.): Deutsche Stratigraphische Kommission, Stratigraphie von Deutschland IV - Keuper. Cour. Forsch.-Inst. Senckenberg, 253: 32-41. Pith cast preservation of Equisetites arenaceus (plate 1, fig. n).

J. Kus et al. (2020): Coal petrological and xylotomical characterization of Miocene lignites and in-situ fossil tree stumps and trunks from Lusatia region, Germany: Palaeoenvironment and taphonomy assessment. Abstract, International Journal of Coal Geology. See also here (in PDF).

F. Löcse et al. (2013): Neue Florenfunde in einem Vulkanit des Oberkarbons von Flöha – Querschnitt durch eine ignimbritische Abkühlungseinheit. PDF file, in German. Veröff. Museum für Naturkunde Chemnitz, 36: 85-142.

J.A. Luczaj et al. (2019): Comment on “Non-Mineralized Fossil Wood” by George E. Mustoe (Geosciences, 2018). Free access, Geosciences, 8.

L. Luthardt et al. (2018): Severe growth disturbances in an early Permian calamitalean – traces of a lightning strike? Abstract, Palaeontographica Abteilung B, 298: 1-22.
! "... The special injury of the calamitalean described herein [...] exhibits an elongated to triangular shape, a central furrow, a scar-associated event ring of collapsed to distorted tracheids, and was ultimately overgrown by callus parenchyma. We suggest that this scar most likely was caused by a lightning strike ..."

L. Luthardt et al. (2017): Tree-ring analysis elucidating palaeo-environmental effects captured in an in situ fossil forest – The last 80 years within an early Permian ecosystem. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 278-295. See also here (in PDF).

L. Luthardt et al. (2016): Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—Sedimentological, geochemical and palaeobotanical evidence. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 441:627–652. See also here.

C. Martín-Closas et al. (2018): New palaeobotanical data from Carboniferous Culm deposits constrain the age of the Variscan deformation in the eastern Pyrenees. Abstract, Geologica acta, 16: 107-123. See also here and there (in PDF).
Pith cast preservation of Calamites!

C. Martín-Closas and J. Galtier (2005): Plant taphonomy and paleoecology of Late Pennsylvanian intramontane wetlands in the Graissessac-Lodève basin (Languedoc, France). In PDF, Palaios, 20: 249–265. See also here.
Note Fig. 7E: An erect pith-cast of Calamites in life position.

E. Martinetto et al. (2014): The plant record of the Dunarobba and Pietrafitta sites in the Plio-Pleistocene palaeoenvironmental context of Central Italy. In PDF, Alpine and Mediterranean Quaternary, 27: 29-72.
Please take notice: Fig. 6, Two panoramic views of the Dunarobba Fossil Forest with tree stumps in situ!

B. Meyer-Berthaud and A.L. Decombeix (2012): Palaeobotany: in the shade of the oldest forest. In PDF, Nature 483: 41-42.

! M.F. Miller et al. (2016): Highly productive polar forests from the Permian of Antarctica. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 292–304. See also here (in PDF).

Forschungsstelle für Paläobotanik, Westfälische Wilhelms-Universität Münster: The Rhynie Chert and its Flora. Go to: 2. The Rhynie Chert Flora. An image showing upright standing Aglaophyton major axes.
These expired links are now available through the Internet Archive´s Wayback Machine.

! G.E. Mustoe (2018): Non-Mineralized Fossil Wood. Open access, Geosciences, 8.

! S.V. Naugolnykh and V.V. Mitta (2016): In situ preserved equisetophyte stems in the Upper Bajocian Parkinsoni Zone (Middle Jurassic) of the Northern Caucasus (Russia). Open Access, Palaeodiversity, 9: 113–120. See also here .

The New York Times (May 01, 2012): An Underground Fossil Forest Offers Clues on Climate Change.

S. Oplustil et al. (2014): T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: A case study from the Middle Pennsylvanian of the Czech Republic. In PDF, see also here (abstract).

Sid Perkins, Science now: ScienceShot: Ancient Forest Kept Good Company. Fossil tree stumps in a sandstone quarry near Gilboa, New York.
The link is to a version archived by the Internet Archive´s Wayback Machine.

H.W. Pfefferkorn et al. (2001): Modern tropical analogs for Carboniferous standing forests: Comparison of extinct Mesocalamites with extant Montrichardia. Abstract, Historical Biology, 15.

Picsearch: Calamites images.

Mike Pole, New Zealand:
The Biggest Tree Stump in the Curio Bay Jurassic Forest.

! G.M. Rex, W.G. Chaloner (1983): The experimental formation of plant compression fossils. PDF file, Palaeontology, 26: 231-252.

L.F. Rinehart et al. (2015): Plant architecture and spatial structure of an early Permian woodland buried by flood waters, Sangre de Cristo Formation, New Mexico. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology.

R. Roberts et al. (2016, article starts on PDF page 7): Root and branch reform for Brymbo fossil. In PDF, Earth Heritage 45.
An in situ Lepidodendron trunk and its excavation from the former Brymbo Steelworks (Wales).

D. Rockenbach Boardman et al. (2016): A new genus of Sphenopsida from the Lower Permian of the Paraná Basin, Southern Brazil. In PDF, Review of Palaeobotany and Palynology, 233: 44–55. See also here and there.

R. Rößler et al. (2014): The root systems of Permian arborescent sphenopsids: evidence from the Northern and Southern hemispheres. In PDF, see also here (abstract).

R. Rößler et al. 2012:
! Start on PDF page 213: Field trip 2: Petrified Forest of Chemnitz – A Snapshot of an Early Permian Ecosystem Preserved by Explosive Volcanism. In PDF, Centenary Meeting of the Paläontologische Gesellschaft, Terra Nostra.
Note fig. 4 (on PDF page 218): The interpretative drawing of the excavation Chemnitz-Hilbersdorf.

Ronny Rössler und Norbert Noll: Calamitea Cotta 1832 - eine fossile Pflanze zwischen Historie und aktueller Forschung (in German).

Sächsische Landesamt für Umwelt und Geologie (2006): Das Döhlener Becken bei Dresden - Geologie und Bergbau. PDF file, in German. Bergbau in Sachsen, vol. 12. See especially PDF page 30: Macroflora starting on PDF page 32 (by M. Barthel). Calamites pith cast on PDF page 35.

von Schauroth (1852): Ueber das Vorkommen von Voltzia coburgensis im mittleren Keupersandstein. Zeitschrift der Deutschen geologischen Gesellschaft, 4: 538-544. Provided by Openlibrary.org. Pith casts of wood, the Voltzia coburgensis preservation.

A. Schenk (1864, starting on PDF page 297): Beiträge zur Flora der Vorwelt. Palaeontographica, 11: 296-308, plate XLVI-XLIX (starting on PDF page 475).
See also here.
Note plate XLVI (on PDF page 475): Pith cast preservation of the fern Chelopteris macropeltis and the coniferous wood Voltzia coburgensis.

Sabine Schmidt, Gravity Research Group, Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Germany: Die Erde. Go to: Biostratonomie: Fossildiagenese. Scroll down to: "Die Erhaltung von Pflanzen" (in German).

J.W. Schneider et al. (2014): Part II. The Carboniferous-Permian basins in Saxony, Thuringia, and Saxony-Anhalt of East Germany. In PDF. See also here. Note fig. 51 (PDF page 13): Cordaixylon trunk with attached branches up to 3 m long as well as other gymnosperm trunks, one is still in situ standing.

! A.C. Scott (1998): The legacy of Charles Lyell: advances in our knowledge of coal and coal-bearing strata. In PDF, Geological Society, London, Special Publications, 143: 243-260. See also here.

! A. Scott and M. Collinson (1982). Starting on PDF page 06: Investigating fossil plant beds. Part 1: The origin of fossil plants and their sediments.
Geology Teaching, 7.
! Note fig. 3: Sketch of in situ silicified tree stumps and lignitic roots, partly with siliceous core.

Z. Simunek et al. (2009): Cordaites borassifolius (Sternberg) Unger (Cordaitales) from the Radnice Basin (Bolsovian, Czech Republic). PDF file, Bulletin of Geosciences, Czech Geological Survey. Pith cast preservation in fig. 32.

Department of Paleobiology, Smithsonian Institution, Washington, D.C.: Underground Carboniferous Forest (Riola mine, Illinois). A lycopsid tree stump and a pith cast of Calamites.

! W.E. Stein et al. (2019): Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Free access, Current Biology, https://doi.org/10.1016/j.cub.2019.11.067. See also here (in PDF).
Worth checking out:
Scientists have discovered the world’s oldest forest—and its radical impact on life (by Colin Barras, Science Magazine, www.sciencemag.org/news/).

W.E. Stein et al. (2012): Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Abstract, Nature, 483. Numerous Eospermatopteris root systems in life position within a mixed-age stand of trees, large woody rhizomes with adventitious roots.

L.H. Tanner and S.G. Lucas (2007): Origin of sandstone casts in the Upper Triassic Zuni Mountains Formation, Chinle Group, Fort Wingate, New Mexico. In PDF, New Mexico Museum of Natural History and Science Bulletin, 40: 209–214.
See also here (provided by Google books).
"... We propose alternatively that the casts are rhizoliths formed by the deep tap roots of the sphenopsid Neocalamites."

! E.L. Taylor et al. (1992): The present is not the key to the past: a polar forest from the Permian of Antarctica. In PDF, Science, 257.

B.A. Thomas (2016): A Carboniferous Fossil Forest in North Wales: Problems and Potentials Associated with Developing and Conserving a "Soft-Rock" Site. Geoheritage.

! B.A. Thomas and L.J. Seyfullah (2015): Stigmaria Brongniart: a new specimen from Duckmantian (Lower Pennsylvanian) Brymbo (Wrexham, North Wales) together with a review of known casts and how they were preserved. Abstract, Geological Magazine, 152: 858–870. See also here (in PDF).

B.A. Thomas and C.J. Cleal (2015): Cyclones and the formation of plant beds in late Carboniferous tropical swamps. Palaeobiodiversity and Palaeoenvironments, 95: 531–536. See also here (in PDF).

! B.A. Thomas (2014): In situ stems: preservation states and growth habits of the Pennsylvanian (Carboniferous) calamitaleans based upon new studies of Calamites Sternberg, 1820 in the Duckmantian at Brymbo, North Wales, UK. Free access, Palaeontology, 57: 21–36.

B.A. Thomas (1986): The formation of large diameter plant fossil moulds and the Walton theory of compaction. In PDF, Geological Journal, 21: 381–385. See also here (abstract).

Marian Timpe, Rostock, Germany:
Versteinerte Pflanzen (in German). A well organized website showing permineralized wood from all over the world. Including location descriptions.
! Note fossil tree stumps e.g. from Lesvos.

Nigel H. Trewin, Stephen R. Fayers and Lyall I. Anderson, University of Aberdeen. The Biota of Early Terrestrial Ecosystems, The Rhynie Chert. Go to: The Rhynie Chert Flora. Polished slab of Rhynie chert showing very well preserved vertical axes of Rhynia gwynne-vaughanii.

V.P. Tverdokhlebov (2004): Buried Equisetites thickets from the Middle Triassic of the south Cis-Urals, Russia. In PDF, Neues Jahrbuch für Geologie und Palaontologie.

D. Uhl and S. Voigt (2014): Ausgewählte Aspekte der Paläontologie des Rotliegenden (Oberkarbon – Unterperm) im Saar-Nahe-Becken (SW-Deutschland) (Exkursion F am 24. April 2014)
(Selected aspects of the palaeontology of the Rotliegend (Upper Carboniferous – Lower Permian) in the Saar-Nahe basin (SW-Germany)).
In PDF, Jber. Mitt. oberrhein. geol. Ver., N.F. 96, 105–128.
Note fig. 20: Base of a stem of Sigillaria.

I.M. Van Waveren et al. (2005): Taphonomy, palaeobotany and sedimentology of the Mengkarang Formation (Early Permian, Jambi, Sumatra, Indonesia). The Nonmarine Permian: Bulletin 30.

E. Vassio et al. (2008): Wood anatomy of the Glyptostrobus europaeus "whole-plant" from a Pliocene fossil forest of Italy. Abstract.

! D. Wang et al. (2019): The Most Extensive Devonian Fossil Forest with Small Lycopsid Trees Bearing the Earliest Stigmarian Roots. Current Biaology, 29: 2604-2615. See also here (in PDF).
Note figure 6: Reconstruction of Guangdedendron.
! Note figure 7: Reconstruction of Xinhang Forest Landscape.
Also worth checking out: Ältester fossiler Wald Asiens entdeckt. Scinexx, in German.

Jun Wang et al. (2012): Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. In PDF, PNAS. See also:
Ash-covered forest is "Permian Pompeii" (S. Perkins, Nature).
Penn researcher helps discover and characterize a 300-million-year-forest.
The Lost Forest.

J. Watson (1983): Two Wealden species of Equisetum found in situ. PDF file, Acta Palaeontologica Polonica, 28: 265-269.

J. Watson and K.L. Alvin (1976): Silicone rubber casts of silicified plants from the Cretaceous of Sudan. PDF file, Palaeontology, 19: 641–650.
Now recovered from the Internet Archive´s Wayback Machine.

M. Wei-Haas (2019): Bizarre Fossils Reveal Asia's Oldest Known Forest. National Geographic Australia.

Wikipedia, the free encyclopedia: Calamites,
Joggins, Nova Scotia, and Rhynie chert.

H.-H. Xu et al. (2017): Unique growth strategy in the Earth’s first trees revealed in silicified fossil trunks from China. In PDF, PNAS, see also here

E.L. Zodrow et al. (2010): Medullosalean fusain trunk from the roof rocks of a coal seam: Insight from FTIR and NMR (Pennsylvanian Sydney Coalfield, Canada). In PDF, International Journal of Coal Geology, 82: 16-124. Lycophyte stump in situ on PDF page 8.
See also here (abstract).

E. Zodrow and M. Mastalerz (2009): A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada). PDF file, Bulletin of Geosciences, 84: 227-240.
! See fig. 12: In situ Calamites pith casts, Sydney Coalfield, Nova Scotia.










Top of page
Links for Palaeobotanists
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind


This index is compiled and maintained by Klaus-Peter Kelber, Würzburg,
e-mail
kp-kelber@t-online.de
Last updated June 05, 2021






















eXTReMe Tracker