Links for Palaeobotanists

An annotated collection of pointers to information on palaeobotany
or to WWW resources which may be of use to palaeobotanists (with an Upper Triassic bias).


What´s New on Links for Palaeobotanists?

History of Palaeobotany
Renowned Palaeobotanists, Progress in Palaeobotany ...
Teaching Documents
Palaeobotany, Palaeontology, Palaeoecology, Field Trip Guides ...
Fossil and Recent Plant Taxa
Sphenophyta, Cycads, Bennettitales, Coniferophyta ...
Preservation & Taphonomy
Plant Taphonomy, Cuticles, Amber, Log Jams ...
Palaeobotanical Tools
Preparation & Conservation, Drawing, Writing,
Microscopy, TEM, Photography, Microtomography ...
Institutions & Organisations
Selected Bot. Gardens and Herbaria, Nat. Hist. Museums,
Palaeobot. Collections, Internat. Palaeo Institutions ...
Conferences & List Server
Conferences, Mailing Lists, Newsgroups ...

Articles in Palaeobotany
Plant Evolution, What is Palaeobotany? Jurassic Palaeobotany ...
Plant Anatomy & Taxonomy
Plant Classification, Chemotaxonomy, Phylogeography, Cladistic Methods ...
Palynology
Palynological Associations, Acritarchs, Dinoflagellates, Palynofacies ...
Ecology & Palaeoenvironment
Stress Conditions, Palaeoenvironment, Ecosystem Recovery,
Palaeosoils, Plant Roots, Playa Lakes, Animal-Plant Interaction ...
Charcoal & Coal Petrology
Fossil charcoal, Fire Ecology, Coal Petrology, Coalification ...
Palaeoclimate
Stomatal Density, Rise of Oxygen, Pre-Neogene Growth Rings ...
Evolution & Extinction
Evolution Sciences vs Creationism, Molecular Clock, P-Tr Extinction ...
Selected Geology
Geological Timescale, Palaeogeography, Sedimentology, Gaia Hypothesis ...
Software
Palaeontological Software, Software of all topics ...
All about Upper Triassic
Triassic Palaeobotany, Tr. Palynology, Tr. Climate,
Triassic Stratigraphy, The European Keuper ...
Literature Search
Journals, Open Access Publishing, Abstracts, Books ...
Databases and Glossaries
Bot. Nomenclature, Encyclopedias, Unit Converter, Trees ...
Images of Plant Fossils
Fossil Plants, Reconstructions, Plant Photographs ...
Job & Experience
Labor Market, Grants, Field Camps, Internships ...
Search
S.-Engines, Botany Search etc. Plagiarism S.
Palaeobotanical Directories, Palaeont. D., Bot. D. ...,










Home / What´s New on Links for Palaeobotanists?


Categories
Palaeobotany and Palaeontology Forums@


What´s New on Links for Palaeobotanists?


I. Vilovic et al. (2023): Variations in climate habitability parameters and their effect on Earth's biosphere during the Phanerozoic Eon. Open access, Scientific Reports, 13. https://doi.org/10.1038/s41598-023-39716-z
Note figure 5: Phanerozoic biodiversity curves.
"... We compiled environmental and biological properties of the Phanerozoic Eon from various published data sets and conducted a correlation analysis to assess variations in parameters relevant to the habitability of Earth’s biosphere
We showed that there were several periods with a highly thriving biosphere, with one even surpassing present day biodiversity and biomass. Those periods were characterized by increased oxygen levels and global runoff rates ..."

C. Mckean et al. (2023): New taphonomic and sedimentological insights into the preservation of high-relief Ediacaran fossils at Upper Island Cove, Newfoundland. Open access, Lethaia, 56: 1–17.
Note figure 11: General taphonomic model.
Figure 12: Epirelief variation model.

! M. Barbacka (1994): Komlopteris Barbacka, gen. nov., a segregate from Pachypteris Brongniart. In PDF, Review of Palaeobotany and Palynology, 83: 339-349.
See likewise here.

M.L. Trivett and G.W. Rothwell (1991): Diversity among Paleozoic Cordaitales. In PDF, Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 183: 289-305.

P.B. Vixseboxse et al. (2024): Taphonomic experiments fixed and conserved with Paraloid B72 resin via solvent replacement. Open access, Lethaia, 57.
"... Taphonomic experiments offer a powerful tool with which to interpret the influence of decay and mineralization on the quality and completeness of Earth’s fossil record
[...] we propose a novel method of soft sediment fixation that permits the stabilization of entire decay experiments for sectioning and microanalysis
[...] Application of this method to a wide range of substrates demonstrates that this methodology can produce effective stabilization of samples, including unconsolidated sands and organic-rich substrates, with a chemically inert polymer ..."

J. Marugán-Lobón et al. (2023): The Las Hoyas Lagerstätte: a palaeontological view of an Early Cretaceous wetland. Free access, Journal of the Geological Society, 180. https://doi.org/10.1144/jgs2022-079.

H.M. Anderson-Holmes (2024): The cupule Kannaskoppia from the Upper Triassic, Molteno Flora, Gondwana: Exploring the whole plant and habitat. YouTube video lecture. A paleobotanical online workshop (about half an hour long), followed by a discussion.
Insights into the study of the Molteno flora of South Africa.

Wikipedia, the free encyclopedia:
Petriellales (in German).

E. Kustatscher et al. (2024): A Kungurian flora from the Southern Alps (Northern Italy) yielding cuticles. Free access, Review of Palaeobotany and Palynology, 323.

G.S. Soreghan et al. (2023): Dust and loess as archives and agents of climate and climate change in the late Paleozoic Earth system. Free access.
From: Lucas, S. G., DiMichele, W. A., Opluštil, S. and Wang, X. (eds.), 2023: Ice Ages, Climate Dynamics and Biotic Events: the Late Pennsylvanian World. Geological Society, London, Special Publications, 535: 195–223.
Note Figure 1: Pangaea configurations for the early Permian (c. 290 Ma).
Figure 4: Provenance and palaeogeography of western equatorial Pangaea.
"... Palaeo-loess and silty aeolian-marine strata are well recognized across the Carboniferous–Permian of equatorial Pangaea. Aeolian-transported dust and loess appear in the Late Devonian in the west, are common by the Late Carboniferous, and predominate across equatorial Pangaea by the Permian
[...] The late Paleozoic was Earth’s largest and most long-lived dust bowl ..."

Kentucky Geological Survey, University of Kentucky, Lexington, KY:
Fossils of the Month. Go to:
! Fossil of the Month: Callixylon.
Note the illustration: Floating logs on today’s seas provide a habitat for a multitude of organisms.

Kentucky Geological Survey, University of Kentucky, Lexington, KY:
Fossils of the Month. Go to:
! Fossil of the month: Calamites.
Note the illustration: How fossils are formed from pith casts, external, and internal casts and impressions.

S. McMahon et al. (2024): Entophysalis in the Rhynie chert (Lower Devonian, Scotland): implications for cyanobacterial evolution. Free access, Geological Magazine, 160.
"... we report the occurrence of the colony-forming cyanobacterium Eoentophysalis in the Rhynie chert
[...] The Rhynie Eoentophysalis appears remarkably similar in appearance both to modern marine and freshwater Entophysalis ssp. and to Eoentophysalis belcherensis ..."

M. Coiro and L.J. Seyfullah (2024): Disparity of cycad leaves dispels the living fossil metaphor. Open access, Communications Biology, 7.
"... Our analysis shows that the cycad leaf morphospace expanded up to the present, with numerous shifts in its general positioning, independently of sampling biases
[...] We also show that rates of evolution were constantly high up to the Early Cretaceous, and then experienced a slight decrease in the Paleogene, followed by a Neogene acceleration. These results show a much more dynamic history for cycads, and suggest that the ‘living fossil’ metaphor is actually a hindrance to our understanding of their macroevolution ..."

M.E. Chrpa et al. (2023): A marine origin of coal balls in the Midland and Illinois basins, USA. Open access, Communications Earth & Environment, 4.
"... Despite their importance to paleobotany, the salinity of coal-ball peat remains controversial. Pennsylvanian coal balls from the Midland and Illinois basins contain echinoderms and early high-magnesium calcite cement
[...] Coal balls likely formed in the marine-freshwater mixing zone ..."

German Commission for UNESCO Bonn, Germany.
The German Commission for UNESCO is an intermediary of foreign cultural and educational policy. Note especially:
Geoparks weltweit (in German).
Geoparks in Deutschland (in German).
! Map of German Geoparks.
Nationale GeoParks (provided by GeoUnion Alfred-Wegener-Stiftung; in German).

! S. McLoughlin et al. (2024): Evidence for saprotrophic digestion of glossopterid pollen from Permian silicified peats of Antarctica. Free access, Grana. https://doi.org/10.1080/00173134.2024.2312610.
"... we describe translucent bodies referable either to fungi (Chytridiomycota) or water moulds (Oomycetes) within the pollen of glossopterid gymnosperms and cordaitaleans, and fern spores from silicified Permian (Guadalupian–Lopingian) peats
[...] Our study reveals that the extensive recapture of spore/pollen-derived nutrients via saprotrophic digestion was already at play in the high-latitude ecosystems of the late Palaeozoic ..."

K.E. McCabe (2023): Marine Deoxygenation Predates the End-Triassic Mass Extinction Within the Equatorial Panthalassa and its Influence on Marine Ecosystems Before the Biotic Crisis. PDF file. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
See also here.
Note figure 10: Timeline of the events around the ETME [end-Triassic Mass Extinction] with a generalized carbon and nitrogen isotope curves in addition to North American (Eastern Panthalassa) generic ammonoid diversity.

! J.A. Trotter et al. (2021): Long-term cycles of Triassic climate change: a new d18O record from conodont apatite. In PDF, Earth and Planetary Science Letters, 415: 165-174.
See likewise here.
! Please note figure 3: Schematic showing best-estimate d18OphosN composite curve for surface waters of the Tethyan subtropics, together with major geo- and bio-events through the Triassic.

! C.L. Häuser et al. (eds; 2005): Digital Imaging of Biological Type Specimens: A Manual of Best Practice: Results from a Study of the European Network for Biodiversity Information. In PDF, European Network for Biodiversity Information, Stuttgart. viii + 309 pp.

A. Tosal et al. (2023): First report of silicified wood from a late Pennsylvanian intramontane basin in the Pyrenees: systematic affinities and palaeoecological implications. Free access, Papers in Palaeontology. doi: 10.1002/spp2.1524.
"... The specimens correspond to two types of arborescent plants, a calamitacean Equisetales (Arthropitys sp.) and a Cordaitales (Dadoxylon sp.). They provide information not available from the adpression flora found in this locality, such as growth patterns, interactions with fungi, and the presence of tyloses ..."

! S. McLoughlin and A.A. Santos (2024): Excavating the fossil record for evidence of leaf mining. Open access, New Phytologist.
Note figure 1: Key events in the evolution of the leaf-mining strategy with representative illustrations of fossilized mine types through geological time.

C.J. O'Connor et al. (2024): Updating conservation techniques for paleontology collections associated with Florissant Fossil Beds National Monument. In PDF, Parks Stewardship Forum.
See likewise here.

! F. Hua et al. (2024): The impact of frequent wildfires during the Permian–Triassic transition: Floral change and terrestrial crisis in southwestern China. Free access, Palaeogeography, Palaeoclimatology, Palaeoecology.
Note figure 1a: Palaeogeographic configuration and the position of the South China Plate.
Figure 7: Schematic model illustrating possible relationships between the wildfires and floral changes during the P–T transition in southwestern China.

J. Bek and J.V. Frojdová (2023): Spore Evidence for the Origin of Isoetalean Lycopsids?Open access, Life, 13. https://doi.org/10.3390/ life13071546.
Note figure 3: Phylogeny of isoetalean lycopsids, modified.
Figure 4: New scheme of phylogeny of isoetalian lycopsids.

S. Collins (2024): Earth’s earliest forest revealed in Somerset fossils. University of Cambridge.
See also here.

L. Baisas (2024): World’s oldest known fossilized forest discovered in England. Popular Science.
See also here.

M.P. Velasco-de León et al. (2024): New records of Bennettitales and associated flora from the Jurassic of the Cualac Formation, Mexico. Open access, Palaeontologia Electronica.

C.C. Loron and F. Borondics (2024): Optical photothermal infrared spectroscopy (O-PTIR): a promising new tool for bench-top analytical palaeontology at the sub-micron scale. Free access, bioRxiv.

! B. Reinhold-Hurek et al. (2015): Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Free access, The Annual Review of Phytopathology, 53: 403–423.

N. Geldner and D.E. Salt (2014): Focus on Roots. Free access, Plant Physiology, 166: 453–454.

B. Zhang et al. (2024): Numerical taxonomy and genus-species identification of Czekanowskiales in China based on machine learning. Free access, Palaeontologia Electronica, 27. https://doi.org/10.26879/1357.
"... accurate identification of Czekanowskiales fossils is difficult due to the similarities in some macroscopic and cuticular patterns among different genera and species
[...] This study focused on the numerical taxonomy and identification of Czekanowskiales at the generic and species levels using cluster analysis, trait selection, and supervised learning methods for machine learning ..."

C. Klug et al. (2024): The marine conservation deposits of Monte San Giorgio (Switzerland, Italy): the prototype of Triassic black shale Lagerstätten. In PDF, Swiss Journal of Palaeontology, 143. https://doi.org/10.1186/s13358-024-00308-7.
See likewise here.
Note figure 4: Reconstructions of some animals from Monte San Giorgio by Beat Scheffold.
Figure 6: Palaeogeographic map.

C. Yu et al. (2023): Climate paleogeography knowledge graph and deep time paleoclimate classifications. Free access, Geoscience Frontiers, 14.
"... the application of climate classification in deep time (i.e., climate paleogeography) is prohibited due to the usually qualitatively constrained paleoclimate and the inconsistent descriptions and semantic heterogeneity of the climate types. In this study, a climate paleogeography knowledge graph is established under the framework of the Deep-Time Digital Earth program
[...] We also reconstruct the global climate distributions in the Late Cretaceous according to these classifications ..."

L.T. Collins (2024): CyberGaia: Earth as cyborg. Open access, Humanities and Social Sciences Communications, 11.
"... from a cybernetic perspective, nature and technology together represent an inextricably connected network of signals and feedback, continuously developing as an organic whole.
[...] seeing the world as an interconnected cybernetic network may help us to better understand the biosphere in its totality while motivating us to take actions which help protect and preserve CyberGaia’s diverse menagerie of human and nonhuman life ..."

A. Hallam (1985): A review of Mesozoic climates. In PDF, Journal of the Geological Society, 142: 433-445. https://doi.org/10.1144/gsjgs.142.3.0433. See likewise here.
Note figure 5: Schematic presentation of continental humid and arid belts for early Triassic.

L.S. Soares and L.B. Freitas (2024): The phylogeographic journey of a plant species from lowland to highlands during the Pleistocene. Open access, Scientific Reports, 14. https://doi.org/10.1038/s41598-024-53414-4.

! K. Gurung et al. (2024): Geographic range of plants drives long-term climate change. Free access, Nature Communications, 15.
Note figure 2: Maps of global biomass, runoff and silicate weathering. "... we couple a fast vegetation model (FLORA) to a spatially-resolved long-term climate-biogeochemical model (SCION), to assess links between plant geographical range, the long-term carbon cycle and climate. Model results show lower rates of carbon fixation and up to double the previously predicted atmospheric CO2 concentration due to a limited plant geographical range over the arid Pangea supercontinent.
[...] We demonstrate that plant geographical range likely exerted a major, under-explored control on long-term climate change ..."

Y. Hsiao et al. (2023): Museomics unveil systematics, diversity and evolution of Australian cycad-pollinating weevils. Open access, Proceedings of the Royal Society, B, 290: 20231385. https://doi.org/10.1098/rspb.2023.1385.
Note figure 1: Obligate pollination between Tranes weevils and Macrozamia cycads.
Figure 3: Fossil-calibrated chronogram for Australian cycad weevils.

N.S. Davies et al.(2024): Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England. Open access, Journal of the Geological Society. https://doi.org/10.1144/jgs2023-204.

! R.G. Beutel et al. (2024): The evolutionary history of Coleoptera (Insecta) in the late Palaeozoic and the Mesozoic. Free access, Systematic Entomology.
Note figure 1: Family-level phylogeny (supertree) and timetree for Coleoptera.
Figure 2: Fossil record and phylogeny of early beetle groups.

V. Vajda et al. (2024): Confirmation that Antevsia zeilleri microsporangiate organs associated with latest Triassic Lepidopteris ottonis (Peltaspermales) leaves produced Cycadopites-Monosulcites-Chasmatosporites- and Ricciisporites-type monosulcate pollen. Abstract, Palaeogeography, Palaeoclimatology, Palaeoecology, 640.

! J.C. McElwain et al. (2024): Functional traits of fossil plants. Open access, New Phytologist.
Note figure 2: Examples of fossil plant functional traits.
Figure 4: A ranked list of paleo-functional traits that can be applied to fossil plants.
"What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics
[...] We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants ..."

D.E. Quiroz Cabascango (2023): Plant Macrofossils from the Aftermath of the End-Triassic Extinction, Skåne, Southern Sweden. Free access, Thesis, Department of Earth Sciences, Uppsala University.

J. Sha et al. (2024): An introduction to the Triassic and Jurassic of the Junggar Basin, China: advances in palaeontology and environments. Free access, Geological Society, London, Special Publications, 538: 1-8.

M.R. Stoneman et al. (2024): Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants. Open access, Communications Biology, 7.
"... In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood
[...] This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. ..."

M. Malekhosseini (2023): Fossil record and new aspects of evolutionary history of Calcium biomineralization and plant waxes in fossil leaves. In PDF, Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, Germany.

L. Burgener et al. (2023): Cretaceous climates: Mapping paleo-Köppen climatic zones using a Bayesian statistical analysis of lithologic, paleontologic, and geochemical proxies. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 613.
See likewise here.
Note figure 1: Global map of Campanian (83.6-72.1 Ma) mean annual temperature data points and the 1444 resulting interpolated mean annual temperature map.
Figure 6: Modern climate zones as defined by the paleo-Köppen climate classification system.










Keywords: Paleobotany, Palaeobotany, Paläobotanik, Paleophytologist, Paleophytology, Palaeophytologist, Palaeophytology, Paleobotánica, Paléobotanique, Paleobotânica, Paleobotanico, Palaeobotanica, Paleobotanika, Paleobotaniky, Paleobotanikai, Paleobotaniikka, Paleontology, Palaeontology, Paläontologie, Paleobotánica, Paleontológico, Paleobotânicos, Paleobotaników, Botany, Fossil Plants, Paleovegetation, Palaeovegetation, Palaeophyticum, Paleophyticum, permineralized plants, petrified, cuticle, cuticles, charcoal, Palynology, Palynologie, Taphonomy, Tafonomía, paleosoil, palaeosoil, mesophytic, mesophyticum, Paläovegetation, Pflanzenfossilien, Evolution, Phylogeny, Triassic, Trias, Triásico, Keuper, Ladinian, Carnian, Norian, Rhaetian, Index, Link Page.


Top of page
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber,
Würzburg,
e-mail
kp-kelber@t-online.de
Last updated March 29, 2024

Golden Trilobite 2011 Some backward links and recommendations
received to date for "Links for Palaeobotanists"




The Golden Trilobite Award Winners List






A tag cloud of 100 links:
Early Land Plants International Palaeobotanical and Palaeontological Institutions Bacterial Biofilms (Microbial Mats) Progress in Palaeobotany and Palynology Tutorials, Tips and Tricks to Adobe Photoshop What´s New on Links for Palaeobotanists? Teaching Documents about Plant Anatomy Palynology Databases Palynology Palaeosoils Indexes in Palaeontology and Evolution Software for Palaeontology Early Triassic Floras Cellulose Peel Technique Biotic Recovery from the Permian-Triassic Mass Extinction Filicales Fungi The Rise of Oxygen Molecular Palaeobotany Fossil Animal Plant Interaction Teaching Documents about Taphonomy The Mass Extinction at the End of the Permian Pith Cast Preservation High Dynamic Range Imaging (HDR) Sphenophyta Looking for a Job Selected Geology Cuticles Playa Lakes (Endorheic Basins) Palaeobotanical, Botanical and Palaeontological Bibliographies Cyanobacteria and Stromatolites Search The Pros and Cons of Pre-Neogene Growth Rings Digital Image Processing Microscopy Writing, Translating and Drawing Angiosperms Bryophyta Triassic Palaeobotany, Palynology and Stratigraphy Fossil Charcoal Teaching Documents about Palaeobotany The Mass Extinction at the End of the Triassic Upcoming Meetings and Symposia Search for Literature Directories focused on Palaeobotany Virtual Field Trip Guides All about Upper Triassic Gymnosperms Grants and Funding Organisations Helpful Databases and Glossaries Stomatal Density Ginkgoales Teaching Documents Classical Textbooks and Monographs in Palaeobotany Focused on Palaeoclimate Job & Experience Bennettitales Evolution Sciences versus Doctrines of Creationism and Intelligent Design Sedimentology and Sedimentary Rocks Teaching Documents about Cladistics Permineralized Plants and Petrified Forests Plant Anatomy & Taxonomy Databases focused on Palaeobotany and Palaeontology Science History of Palaeobotany and Renowned Palaeobotanists Palaeoclimate Palaeobotany, Botany, and Palaeontology Journals Online Glossaries, Dictionaries and Encyclopedias Preservation & Taphonomy Stratigraphy and Facies of the European Keuper Insight into the Triassic World Plant Fossil Preservation Cycads Coal Petrology Open Access Publishing Focus Stacking (Photography, Extended Depth of Field) Teaching Documents about Classification and Phylogeny Fossil and Recent Plant Taxa Teaching Documents about Stratigraphy and Historical Geology Whole Plant Reconstructions Charcoal & Coal Petrology Pyrite Preservation Palaeobotanists Personal Pages Paleovegetation Reconstructions Palaeobotanical and Palaeontological Collections Taxonomy and Plant Classification Databases Photography and Scanning Software Ecology & Palaeoenvironment Leaf Size and Shape and the Reconstruction of Past Climates Palaeobotanical Tools Websites, showing Plant Fossils Conferences & List Server Pteridospermopsida Institutions & Organisations Abstracts- and Preprint Server Evolution & Extinction Lycophyta Riparian Habitats Teaching Documents about Botany Teaching Documents about Evolution





















eXTReMe Tracker