Links for Palaeobotanists

An annotated collection of pointers to information on palaeobotany
or to WWW resources which may be of use to palaeobotanists (with an Upper Triassic bias).

What´s New on Links for Palaeobotanists?

History of Palaeobotany
Renowned Palaeobotanists, Progress in Palaeobotany ...
Teaching Documents
Palaeobotany, Palaeontology, Palaeoecology, Field Trip Guides ...
Fossil and Recent Plant Taxa
Sphenophyta, Cycads, Bennettitales, Coniferophyta ...
Preservation & Taphonomy
Plant Taphonomy, Cuticles, Amber, Log Jams ...
Palaeobotanical Tools
Preparation & Conservation, Drawing, Writing,
Microscopy, TEM, Photography, Microtomography ...
Institutions & Organisations
Selected Bot. Gardens and Herbaria, Nat. Hist. Museums,
Palaeobot. Collections, Internat. Palaeo Institutions ...
Conferences & List Server
Conferences, Mailing Lists, Newsgroups ...

Articles in Palaeobotany
Plant Evolution, What is Palaeobotany? Jurassic Palaeobotany ...
Plant Anatomy & Taxonomy
Plant Classification, Chemotaxonomy, Phylogeography, Cladistic Methods ...
Palynological Associations, Acritarchs, Dinoflagellates, Palynofacies ...
Ecology & Palaeoenvironment
Stress Conditions, Palaeoenvironment, Ecosystem Recovery,
Palaeosoils, Plant Roots, Playa Lakes, Animal-Plant Interaction ...
Charcoal & Coal Petrology
Fossil charcoal, Fire Ecology, Coal Petrology, Coalification ...
Stomatal Density, Rise of Oxygen, Pre-Neogene Growth Rings ...
Evolution & Extinction
Evolution Sciences vs Creationism, Molecular Clock, P-Tr Extinction ...
Selected Geology
Geological Timescale, Palaeogeography, Sedimentology, Gaia Hypothesis ...
Palaeontological Software, Software of all topics ...
All about Upper Triassic
Triassic Palaeobotany, Tr. Palynology, Tr. Climate,
Triassic Stratigraphy, The European Keuper ...
Literature Search
Journals, Open Access Publishing, Abstracts, Books ...
Databases and Glossaries
Encyclopedias, Unit Converter, What´s New ...
Images of Plant Fossils
Fossil Plants, Reconstructions, Plant Photographs ...
Job & Experience
Labor Market, Grants, Field Camps, Internships ...
S.-Engines, Botany Search etc. Plagiarism S.
Palaeobotanical Directories, Palaeont. D., Bot. D. ...,

Home / What´s New on Links for Palaeobotanists?

Palaeobotany and Palaeontology Forums@

What´s New on Links for Palaeobotanists?

M.R. Stoneman et al. (2024): Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants. Open access, Communications Biology, 7.
"... In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood
[...] This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. ..."

L. Brakebusch (2022): Record of the end-Triassic mass extinction in shallow marine carbonates: the Lorüns section (Austria). In PDF, Thesis, Department of Geology, Lund University.
Note figure 3: Palaeogeographic map of Pangaea.
Figure 21: Flow chart showing possible cascading effects of CAMP with respect to an ocean acidification scenario.
"... The importance of the Lorüns section lies in the continuous sedimentation from the late Rhaetian to the Sinemurian, which gives the direct possibility to study environmental conditions before, during and after the ETE [end-Triassic mass extinction] ..."

! J.W. Lichtman and J.A. Conchello (2005): Fluorescence microscopy. In PDF. Nature methods, 2: 910–919. See likewise here.

M. Malekhosseini (2023): Fossil record and new aspects of evolutionary history of Calcium biomineralization and plant waxes in fossil leaves. In PDF, Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, Germany.

L. Burgener et al. (2023): Cretaceous climates: Mapping paleo-Köppen climatic zones using a Bayesian statistical analysis of lithologic, paleontologic, and geochemical proxies. In PDF, Palaeogeography, Palaeoclimatology, Palaeoecology, 613.
See likewise here.
Note figure 1: Global map of Campanian (83.6-72.1 Ma) mean annual temperature data points and the 1444 resulting interpolated mean annual temperature map.
Figure 6: Modern climate zones as defined by the paleo-Köppen climate classification system.

A. Roth-Nebelsick and C. Traiser (2024): Diversity of leaf architecture and its relationships with climate in extant and fossil plants. In PDF. Palaeogeography, Palaeoclimatology, Palaeoecology, 634.
See also here.
"... the diversity of functional leaf architecture and its association with climate is studied for extant woody dicot species
[...] results of this study indicate that diversity of leaf architecture may be a useful source of information for palaeoecology and palaeoclimate ..."

! T. Salles et al. (2023): Landscape dynamics and the Phanerozoic diversification of the biosphere. Free access, Nature, 624: 115–121.
Note figure 1: Physiographic evolution and associated patterns of erosion–deposition across the Phanerozoic.
Figure 4: Continental sediment deposition and physiographic complexity, and diversity of vascular plants, during the Phanerozoic.
"... we couple climate and plate tectonics models to numerically reconstruct the evolution of the Earth’s landscape over the entire Phanerozoic eon, which we then compare to palaeodiversity datasets from marine animal and land plant genera. Our results indicate that biodiversity is strongly reliant on landscape dynamics
[...] On land, plant expansion was hampered by poor edaphic conditions until widespread endorheic basins resurfaced continents with a sedimentary cover that facilitated the development of soil-dependent rooted flora ..."

Tim Revell, Mt. San Antonio College, Walnut, CA.
Bio 2 - Plant and Animal Biology. Go to:
Plant Classification (Nonvascular). Lecture notes, Powerpoint presentation.

K.P. Sharanya, Department of Botany, NSS College Pandalam:
Cycads. Lecture notes, Powerpoint presentation.

M. Coiro (2024): Embracing uncertainty: The way forward in plant fossil phylogenetics. Open access, American Journal of Botany.
"... Although molecular phylogenetics remains the most widely used method of inferring the evolutionary history of living groups, the last decade has seen a renewed interest in morphological phylogenetics
[...] Given the nature of plant fossil and morphological data, embracing uncertainty by exploring support within the data represents a more productive and heuristic research program than trying to achieve the same support and resolution given by molecular data ..."

S. Saha et al. (2023): Fine root decomposition in forest ecosystems: an ecological perspective. Free access, Front. Plant Sci., 14. doi: 10.3389/fpls.2023.1277510.

J.P. Saldanha et al. (2023): Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil. Free access, Biogeosciences, 20: 3943–3979.
Note figure 1: Representative cross-section of Earth’s crust showing the diversity of inhabited extreme environments, besides the common biosphere, and the contribution of abiotic and biotic minerals in the sedimentary cycle.
"... any geological object, whether abiotic or biotic, must be understood in terms of its formation and original conditions, as well as the subsequent processes that contribute to its maintenance, modification, or destruction ..."

F. Tang et al. (2022): Insight into the formation of trumpet and needletype leaf in Ginkgo biloba L. mutant. Free access, Front. Plant Sci. 13:1081280. doi: 10.3389/fpls.2022.1081280.

M.Y. Bradford and K.C. Benison (2024): Gypsum lakes, sandflats and soils revealed from the Triassic Red Peak Formation of the Chugwater Group, north-central Wyoming. Open access, Depositional Rec. 2024;00:1–19.
"... Fieldwork, petrography and X-ray diffraction reveal three distinct lithologies of bedded gypsum: bottom-growth gypsum, laminated gypsum and clastic gypsum
[...] this outcrop of the Red Peak Formation shows that it formed in shallow saline lakes and associated mudflats, sandflats and desert soils ..."

R. Bos et al. (2023): Triassic-Jurassic vegetation response to carbon cycle perturbations and climate change. Free access, Global and Planetary Change, 228.
Note figure 1: Paleogeographic reconstruction of the end-Triassic.
Figure 4. Major vegetation patterns as inferred by their botanical affinities.
Figure 5. Palynofloral diversity indices plotted against the variation of major botanical groups.
Figure 7. Depositional model of paleoenvironmental changes in the northern German Basin-

! J.M. Galloway and S. Lindström (2023): Wildfire in the geological record: Application of Quaternary methods to deep time studies. Open access, Evolving Earth, 1.
! Note figure 1: Summary figure of changes in atmospheric O2 [...] and important events in Earth’s history, climate state, selected extinction events.

G. Racki (2020): Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives. PDF file, in Adatte, T., Bond, D.P.G., and Keller, G., (eds.): Mass Extinctions, Volcanism, and Impacts: New Developments: Geological Society of America Special Paper 544, p. 1–34. Special Paper, 544. See likewise here.
Note figure 9: Major geologic processes contributing to widespread oceanic anoxia, in a broad conceptual setting of the global system.
Figure 10: Volcanic super-greenhouse (“summer”) scenario.
"... In recent models of earth-system crises, the correlation between the major Phanerozoic mass extinctions and large igneous provinces has been well established
[...] the killing effectiveness of volcanic cataclysm should be viewed not only by the large igneous province size but also by their host geology, magma plumbing system, and eruption dynamics ..."

R.A. Gastaldo et al. (2024): Enigmatic fossil plants with three-dimensional, arborescent-growth architecture from the earliest Carboniferous of New Brunswick, Canada. Open access, Current Biology, 34: 1–12.
"... We present a new tree-crown architecture based on exceptional three-dimensional specimens
[...] this specimen shows that Early Carboniferous vegetation was more complex than realized, signaling that it was a time of experimental, possibly transitional and varied, growth architectures ..."
Note also:
3D-Fossilien skurriler Ur-Bäume entdeckt. (in German). By Tim Stonesifer, Bild der Wissenschaft.

Edgar Moctezuma. Department of Cell Biology and Molecular Genetics, University of Maryland, Washington D.C.
Lecture 3: Plant anatomy and physiology. Lecture notes, Powerpoint presentation.

P. Zhang et al. (2024): Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition. Free access, Front. Ecol. Evol., 12.

B. van de Schootbrugge et al. 2024): Recognition of an extended record of euglenoid cysts: Implications for the end-Triassic mass extinction. Free access, Review of Palaeobotany and Palynology, 322.
Note figure 1: Reconstructed palaeographic map of the Triassic-Jurassic boundary interval.
"... We conclude that Chomotriletes is the valid senior synonym of a variety of taxa, including Circulisporites, Pseudoschizaea, and Concentricystes
[...] Chomotriletes s.l. is considered to be a cyst of a freshwater organism
[...] The presence of euglenoid cysts in association with the end-Triassic extinction fits a scenario in which enhanced rainfall followed by strong soil erosion resulted in the release and redeposition of Chomotriletes into shallow marine settings ..."

C.A. Benavente et al. (2024): Triassic Gondwanan floral assemblages reflect paleogeography more than geologic time. Abstract, Gondwana Research.
"... Combining these and existing geochronologic data with a newly assembled comprehensive presence/absence dataset of palynomorphs from the Anisian-Norian of Gondwana, we demonstrate that paleogeography (paleolatitude) has a significantly stronger correlation with taxonomic composition of assemblages than does geologic time
[...] results imply that geography is an important null hypothesis in explaining differences in early Mesozoic Gondwanan palynomorph assemblages, and that precise geochronologic age constraints are important for refining the accuracy of Triassic palynomorph biochronology ..."

S.G. Lucas (2023): Permophiles Perspective: Nonmarine Permian Biostratigraphy, Biochronology and Correlation . In PDF, Permophiles, 75.

Bruce Rueger, Department of Geology, Colby College, Waterville, ME:
Radiometric Methods for Dating Rocks. Lecture notes, Powerpoint presentation.

P. Wilf and R.M. Kooyman (2023): Do Southeast Asia's paleo-Antarctic trees cool the planet?
Note figure 2: Reference paleoglobes for the early Eocene (left), south polar view with part of Patagonia at the bottom and Australia at the top, and early Miocene (right), centered on Australia.
"... Many tree genera in the Malesian uplands have Southern Hemisphere origins, often supported by austral fossil records
[...] Paleo-Antarctic trees, in all likelihood, have helped cool the planet by occupying and contributing to the weathering and CO2 consumption of uplifted terranes in Malesia over the past c. 15 Myr ..."

National Museums Scotland, Edinburgh. Review of Fossil Collections in Scotland Highlands and Islands. In PDF.
Review of Fossil Collections in Scotland. In PDF.

! R. Guralnick et al. (2024): Humans in the loop: Community science and machine learning synergies for overcoming herbarium digitization bottlenecks. Open access, Appl. Plant Sci., 2024;e11560.
"... Among the slowest steps in the digitization of natural history collections is converting imaged labels into digital text
[...] Our results showcase a >93% success rate for finding and classifying main labels ..."

N. Gentis et al. (2024): First fossil woods and palm stems from the mid-Paleocene of Myanmar and implications for biogeography and wood anatomy. Open access, Am J Bot., 111.

H. Sakio (ed., 2020): Long-Term Ecosystem Changes in Riparian Forests. Open access, Ecological Research Monographs (Springer).
This book represents the results of more than 30 years of long-term ecological research in riparian forest ecosystems.

! M.R. Pace (2020): Phloem: Cell Types, Structure, and Commercial Uses. Chapter 1, in:
A. Gonzalez et al. (eds., 2020). Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro. Open access, (IntechOpen).
"... Phloem is the vascular tissue in charge of transport and distribution of the organic nutrients. The phloem is also a pathway to signaling molecules and has a structural function in the plant body. It is typically composed of three cell types: sieve elements, parenchyma, and sclerenchyma
[...] In this chapter, the structure of the phloem and its cell types are described in detail and also some of the known commercial uses of this tissue ..."

OpenAIRE is a non-profit organization with a mission to promote open scholarship and improve discoverability, accessibility, shareability, reusability, reproducibility, and monitoring of data-driven research results, globally.
The organization operates a European e-infrastructure offering a diverse set of public services.

S.G. Lucas et al. (2023): Unusual Sandstone Cylinders from the Lower Permian Glorieta Sandstone, Northern New Mexico. In PDF, New Mexico Geology. See also here.
"... The most likely origin of these cylinders is as the fill of molds left by plant stems that were buried upright ..."

! Q. Wu et al. (2024): The terrestrial end-Permian mass extinction in the paleotropics postdates the marine extinction. Free access, Science Advances, 10.
Note figure 1: Location of study area.
Figure 2: Correlations of the EPME [end-Permian mass extinction] between terrestrial and transitional coastal sections in Southwest China.
! Figure 5: Global correlation of the EPME.
Figure 6: Schematic illustration of the terrestrial EPME process.
"...We present high-precision zircon U-Pb geochronology by the chemical abrasion–isotope dilution–thermal ionization mass spectrometry technique on tuffs from terrestrial to transitional coastal settings
[...] our results suggest that the terrestrial extinction occurred diachronously with latitude, beginning at high latitudes during the late Changhsingian and progressing to the tropics by the early Induan, spanning a duration of nearly 1 million years ..."

! C.J. Cleal and B.A. Thomas (2023): Taxonomy and nomenclature of Sphenopteris and allied fossil-genera of Carboniferous seed-plant fronds. Open access, Taxon, 72: 717-964.

J. Sakala (2023): Fossil Wood Analyses: Several Examples from Five Case Studies in the Area of Central and NW Bohemia, Czech Republic. Abstract, Xylem, pp 89–104.

P. Matysová (2016): Study of fossil wood by modern analytical methods: case studies. Doctoral Thesis, Charles University in Prague, Faculty of Science, Institute of Geology and Palaeontology. Please take notice:
Fig. 6 (PDF page 39): Artistic reconstruction of wood deposition and silicification in river sediments.
Fig. 7 (PDF page 39): Artistic reconstruction of plant burial by volcanic fall-out.

S.S. Renner (2023): A time tree for the evolution of insect, vertebrate, wind, and water pollination in the angiosperms. Free access, New Phytologist, 240: 464–465.
This article is a Commentary on Stephens et al. (2023), 240: 880–891.

! R.E. Stephens et al. (2023): Insect pollination for most of angiosperm evolutionary history. Open access, New Phytologist, 240: 880–891.
"... Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages.
[...] We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes
[...] Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history ..."

C. Strullu-Derrien et al. (2023): The Carboniferous (Serpukhovian) macroflora from the “Coteaux du Pont Barré”, Beaulieu-sur-Layon (Maineet- Loire), South of the Armorican Massif, France. Open access, Botany Letters, 170: 183-193. DOI: 10.1080/23818107.2023.2183899.

S. Saminpanya et al. (2023): Mineralogy, geochemistry, and petrogenesis of the world's longest petrified wood. In PDF. International Journal of Geoheritage and Parks. See likewise here.

! Daniel Hauptvogel, Virginia Sisson et al. (2023), Department of Earth and Atmospheric Sciences at the University of Houston:
The Story of Earth: An Observational Guide 2e . Second edition (Pressbooks), Open access. You can download a printable PDF version.
Navigate from the content menue page. Note especially:
! Chapter 11: Paleoclimate.

! H. Halbritter et al. (2018): Illustrated Pollen Terminology. Open access, Springer.
This open access book offers a fully illustrated compendium of glossary terms and basic principles in the field of palynology. It is a revised and extended edition of “Pollen Terminology. An illustrated handbook,” published in 2009. This second edition, titled “Illustrated Pollen Terminology” shares additional insights into new and stunning aspects of palynology.
See likewise here.

! F. Löcse and R. Rößler (2018): Paul Geipel's palaeobotanical collection–one of the largest and most important former private collections of the Petrified Forest of Chemnitz. PDF file, in German. Veröff. Museum für Naturkunde Chemnitz, 41: 5-54.
See likewise here.

L. Miao et al. (2024): 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China Science Advances, 10. DOI: 10.1126/sciadv.adk3208. See also here.
! Note figure 8: Overview of early evolution of the Eukarya along with fossil records.
"... we report cellularly preserved multicellular microfossils (Qingshania magnifica) from the ~1635-million-year-old Chuanlinggou Formation, North China. The fossils consist of large uniseriate, unbranched filaments with cell diameters up to 190 micrometers; spheroidal structures, possibly spores, occur within some cells ..."

W.B. Sanders (2023): Is lichen symbiont mutualism a myth? Open access, BioScience, 73: 623–634.
See likewise here (in PDF).
Note figure 3: Two symbioses on intertidal rocks compared with respect to the lichen concept.
Figure 4: Two symbioses involving fungi of the Verrucariaceae (Ascomycota) and green algae of the Prasiolaceae compared with respect to the lichen concept.

J. Lee et al. (2024): Microtomography of an enigmatic fossil egg clutch from the Oligocene John Day Formation, Oregon, USA, reveals an exquisitely preserved 29-million-year-old fossil grasshopper ootheca. Free access, Parks Stewardship Forum, 40.
"... Using micro­tomography, we studied an enigmatic fossil egg clutch
[] Based on the morphology of the overall structure and the eggs, we conclude that the specimen represents a fossilized underground ootheca of the grasshoppers and locusts (Orthoptera: Caelifera) ..."

N. Zavialova (2024): Comment on “The ‘seed-fern’ Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis” by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723]. Abstract, Review of Palaeobotany and Palynology, 322.
"... Recently, Ricciisporites Lundblad and Cycadopites Wodehouse (= Monosulcites Cookson) pollen types have been found cooccurring in Antevsia zeilleri
[...] the two pollen types are too dissimilar by their exine ultrastructure as well as by the general morphology and exine sculpture.
[...] Another explanation should be found for the presence of Ricciisporites tetrads in these pollen sacs ..."

G. Wu et al. (2024): Advances in understanding the mechanisms of organ abscission in vivo and in vitro plants. Abstract, Plant Growth Regulation.
"... This paper reviews the organ abscission mechanism from the perspectives of cell histology, physiological biochemistry and molecular biology and looks forward to organ abscission research, which aims to fully clarify the plant organ abscission mechanism ..."

Keywords: Paleobotany, Palaeobotany, Paläobotanik, Paleophytologist, Paleophytology, Palaeophytologist, Palaeophytology, Paleobotánica, Paléobotanique, Paleobotânica, Paleobotanico, Palaeobotanica, Paleobotanika, Paleobotaniky, Paleobotanikai, Paleobotaniikka, Paleontology, Palaeontology, Paläontologie, Paleobotánica, Paleontológico, Paleobotânicos, Paleobotaników, Botany, Fossil Plants, Paleovegetation, Palaeovegetation, Palaeophyticum, Paleophyticum, permineralized plants, petrified, cuticle, cuticles, charcoal, Palynology, Palynologie, Taphonomy, Tafonomía, paleosoil, palaeosoil, mesophytic, mesophyticum, Paläovegetation, Pflanzenfossilien, Evolution, Phylogeny, Triassic, Trias, Triásico, Keuper, Ladinian, Carnian, Norian, Rhaetian, Index, Link Page.

Top of page
Search in all "Links for Palaeobotanists" Pages!
index sitemap advanced
site search by freefind

This index is compiled and maintained by Klaus-Peter Kelber,
Last updated February 23, 2024

Golden Trilobite 2011 Some backward links and recommendations
received to date for "Links for Palaeobotanists"

The Golden Trilobite Award Winners List

A tag cloud of 100 links:
Early Land Plants International Palaeobotanical and Palaeontological Institutions Bacterial Biofilms (Microbial Mats) Progress in Palaeobotany and Palynology Tutorials, Tips and Tricks to Adobe Photoshop What´s New on Links for Palaeobotanists? Teaching Documents about Plant Anatomy Palynology Databases Palynology Palaeosoils Indexes in Palaeontology and Evolution Software for Palaeontology Early Triassic Floras Cellulose Peel Technique Biotic Recovery from the Permian-Triassic Mass Extinction Filicales Fungi The Rise of Oxygen Molecular Palaeobotany Fossil Animal Plant Interaction Teaching Documents about Taphonomy The Mass Extinction at the End of the Permian Pith Cast Preservation High Dynamic Range Imaging (HDR) Sphenophyta Looking for a Job Selected Geology Cuticles Playa Lakes (Endorheic Basins) Palaeobotanical, Botanical and Palaeontological Bibliographies Cyanobacteria and Stromatolites Search The Pros and Cons of Pre-Neogene Growth Rings Digital Image Processing Microscopy Writing, Translating and Drawing Angiosperms Bryophyta Triassic Palaeobotany, Palynology and Stratigraphy Fossil Charcoal Teaching Documents about Palaeobotany The Mass Extinction at the End of the Triassic Upcoming Meetings and Symposia Search for Literature Directories focused on Palaeobotany Virtual Field Trip Guides All about Upper Triassic Gymnosperms Grants and Funding Organisations Helpful Databases and Glossaries Stomatal Density Ginkgoales Teaching Documents Classical Textbooks and Monographs in Palaeobotany Focused on Palaeoclimate Job & Experience Bennettitales Evolution Sciences versus Doctrines of Creationism and Intelligent Design Sedimentology and Sedimentary Rocks Teaching Documents about Cladistics Permineralized Plants and Petrified Forests Plant Anatomy & Taxonomy Databases focused on Palaeobotany and Palaeontology Science History of Palaeobotany and Renowned Palaeobotanists Palaeoclimate Palaeobotany, Botany, and Palaeontology Journals Online Glossaries, Dictionaries and Encyclopedias Preservation & Taphonomy Stratigraphy and Facies of the European Keuper Insight into the Triassic World Plant Fossil Preservation Cycads Coal Petrology Open Access Publishing Focus Stacking (Photography, Extended Depth of Field) Teaching Documents about Classification and Phylogeny Fossil and Recent Plant Taxa Teaching Documents about Stratigraphy and Historical Geology Whole Plant Reconstructions Charcoal & Coal Petrology Pyrite Preservation Palaeobotanists Personal Pages Paleovegetation Reconstructions Palaeobotanical and Palaeontological Collections Taxonomy and Plant Classification Databases Photography and Scanning Software Ecology & Palaeoenvironment Leaf Size and Shape and the Reconstruction of Past Climates Palaeobotanical Tools Websites, showing Plant Fossils Conferences & List Server Pteridospermopsida Institutions & Organisations Abstracts- and Preprint Server Evolution & Extinction Lycophyta Riparian Habitats Teaching Documents about Botany Teaching Documents about Evolution

eXTReMe Tracker